Navigating the unknown:

enhancing aquatic remote
sensing products through
uncertaunty
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My primary research interests include:
* Aquatic remote sensing of inland and coastal waters

* |0Ps, aquatic optics, phytoplankton, primary production, freshwater

ecology
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Atmospheric correction:
L) = L,(A) + L,A) + t(A)L,,(A) + L)

Remote sensing reflectance (R,,):

Lu(M) bp (1) R, uncertainty
D= zm “"n,w h

E.g.: absorption by phytoplankton:

aph(d) = a@) — a,,(A) — acnoManap(443)e~ S —443) IOP uncertainty

E.g.: primary production (PP) at depth (z) after Lee et al., 1996:
pp(z) = ¢f,apn(MEg(A)dA

Downstream product uncertainty
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Based on: 100 research articles on aquatic remote sensing published in major journals in 2021-2023 (20 articles
per journal) from:

Percentage of articles [%]

1. Elsevier's Remote Sensing of Environmentvolumes 284 to 290
2. Elsevier’s International Journal of Applied Earth Observation and Geoinformation volumes 104 to 117
3. MDPI's Remote Sensing volumes 15(3) to 15(7)
4. Frontier's Frontiers in Remote Sensing volumes 2 to 4
5. |EEE's /EEE Transactions on Geoscience and Remote Sensing volumes 60 to 61.
100
80 | Offering uncertainty estimate on results
60
Assessing impact and adapting methodology
40
Quantifying and accounting for it in input data
20 A
ll) 2ID 4|0 6ID SID 100
Percentage of articles[%]
ol

Discussed uncertainty Quantified and aﬁplied uncertainty Other
Categories
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Systematic error: Affects the accuracy of a measurement, i.e. how much an estimated
value differs from a “true” reference value.

Affects the precision of a measurement, i.e. the dispersion between

multiple individual measurements of the same quantity, creating an uncertainty on the
result.

IOCCG (2019). Uncertainties in Ocean Colour Remote Sensing. Mélin F. (ed.), IOCCG Report
Series, No. 18, International Ocean Colour Coordinating Group, Dartmouth, Canada.
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Systematic errors and Known Unknowns of radiometric measurements

Material properties

Calibration errors

Incorrect assumptions

Sensor drift
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Stems from unpredictable / stochastic variations in a sample, measurement process or data processing,
causing uncertainty in individual values. Sources include:

1. Spatial and temporal variability in a sample/pixel

2. Surface glint and wind effects

3. Thermal or photon noise in a sensor

4

Human error

Measured liquid volume variability and uncertainty
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Uncorrelated uncertainties occur with measurements that have independent error sources. For example
/n situ vs satellite-derived radiometric products.

Analytical propagation typically uses derivatives to express the sensitivity of a variable yto small
changes in a variable x due to uncertainty. In the simple case of independent variables with
uncorrelated uncertainties, this leads to the familiar sum-of-squares method:

2 _ 9y it
Oy = (JII 81:1) + (D‘Iz 8:1:;3) + ...
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Correlated uncertainties arise when measurements share common error sources or are influenced by
the same underlying factors.

For this more general case of multiple correlated variables, the Jacobian matrix J is used with ,, 2, the
covariance matrices for multidimensional variables x, y:

T
», =J%,J
2 (O O]
9 Sy dn i Oz, Og,z; Ozqzy iy dy
Ty Tuwe| | Bz Bz Ors 2 By By
o o2 | |2 B O Tzzy Oz Tzas B2y Bz
U1a Y2 o, dzrs  Oz3 O,y Ozyzs ng Gy By
: _3;:1 ﬂ.‘rg_
See: Guide to the expression of uncertainty in measurement (GUM) or the
IOCCG 2019 report. 13 Lake3P
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Let's assume we are measuring a physical quantity that depends on two variables, X and Y, where both
variables have associated uncertainties. We'll calculate a derived quantity ZasZ=X+Y

X has a mean of 10 and a standard deviation of 1.

* Y has a mean of 5 and a standard deviation of 0.5.

Distributions of input variables (X, Y) Distribution of output variable (Z)
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3. Embracing uncertainty: The benefits aqueatgrﬂrcahgooo

“Embracing uncertainty means recognizing its inherent presence, actively incorporating it into research and
decision-making processes, leveraging it as a driving force for innovation and for gaining a deeper
understanding of aquatic remote sensing models and products.”

BNN chlorophyll-a (C2RCC AC)

BNN chlorophyll-a uncertainty (C2RCC AC)
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Code: https://github.com/mowerther/BNN_2022

... and is more than just providing an uncertainty estimate alongside a RS product

Werther, M. and Burggraaff, O. (2023): Dive Into the Unknown:
Embracing Uncertainty to Advance Aquatic Remote Sensing. L S kE‘ 5 p

J. Remote Sens. 2023;3:0070. 15
U
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.. by quantifying the contributions of each input to the overall uncertainty.

Consider the measurements of Chla through a fluorometer for /n s/tu data:

Fm
F,,—1

Ve

Chla = v,

(Fo_Fa)Fs

here:

V;is the sample volume

V., is the extraction volume

F,and F, are the fluorometer readings before and after acidification
and £, and F_ are calibration constants

Which parameter contributes most to the uncertainty in Chla?

16 Loke3P



Example A: Targeted improvement through uncertainty analysis

Consider the following values from an actual experiment:

F, =680 2
F, =395 & 2

V., =0.0052 + 0.0001L, and V,=0.2880 + 0.0005 L

with empirically determined calibration factors:
F..=195+0.05and F_=0.32 = 0.02.

Propagation into o.j;, through sum-of-squares analytical method:

(Jcma. )2 B oF., N of, +0F, N oF, N oy, N o,
Chla/ — F3(F, -1 (F,-F)' F' Vi V}

Chla=3.39 + 0.24 pg L™’
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Example A: Targeted improvement through uncertainty analysis aquatic research gooo

Which input contributes most to the uncertainty in Chla?

Calibration constant F,, (14%)

Data: Sample volume V} (0.06%)
Data: Extraction volume V., (7%)
Data: Fluorometer reading F, (1%)

Data: Fluorometer reading F, (1%)

Calibration constant F, (77%)

The uncertainty in Chla was dominated (90.1%) by the calibration factors £, and F, with only 9.9% coming
from measurement uncertainty.

In practical terms: improving the calibration process was more effective for this experiment in reducing
uncertainty in Chla than repeated or more precise lab work ->

18 Loke3P



Example B: Validation and match-up analysis

Match-up validation: /n situ R vs. satellite-derived R,
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How different are the values we compare (without knowing the uncertainty associated with them)?

Linear regression without Linear regression with
uncertainty-based weighting uncertainty-based weighting
— i . . , =
0.064| ® Data 0.06 : .';'/
O U4
T & (5 S
s 0.04 5 0.04 r’*,’;
4 o .. 9 S — =X
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0.02 1 ® 0.024 =@ 1L oo Unweighted
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4 Data
0.00 v T v 0.00 +&<= . v .
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Improved match-up analysis and regression through
the application of weights based on uncertainty in x
and yresulted in 2.5 x lower error when compared to
unweighted regression.

19
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Trophic state vs Chlorophyll-a conconcentration
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3. Example C: Decision-making

Let’'s assume a Chla value of 7 mg m-3 obtained through satellite remote
sensing (typical uncertainty for complex waters: 20-100%).

« Here: with an uncertainty of 30% (normally distributed).

« Then the observation results in Chla of 7.0 £ 2.1 mg m-3

Probability

Mean: 7.0

Mean: 7.0 /| Threshold: 8.0 Threshold: 8.0

Chla

Chla

«— 68% 32% —

« 100%
Mesotrophic Eutrophic

Mesotrophic

Approximately 32% of the associated probability density overlaps with the eutrophic
range, indicating a significant probability that the water body is in fact eutrophic.

21 Loke3P
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3. Example D: Atmospheric correction (AC)

OLCI RGB BNN chla [mg m~3] £ [%] € [%] filtered
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Werther et al., 2022: A Bayesian
approach for remote sensing of
chlorophyll-a and associated retrieval
uncertainty in oligotrophic and
mesotrophic lakes, Rem. Sens. Env.
(283), 113295.
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3. Example D: AC algorithm selection éawag
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Merged ¢ [%] Merged BNN chla [mg m~3]
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Uncertainty is inherent in all aspects of aquatic remote sensing, but often remains unaddressed.

The advantages of embracing it are clear -> Uncertainty causes us to challenge our assumptions, refine
our models, and enhance methodologies.

However, the journey to understand and effectively managing uncertainty can be a long-term endeavor,
and may take years to discover, validate and incorporate into new approaches.

-> Work with uncertainty, rather than against it

Werther, M. and Burggraaff, O. (2023): Dive Into the Unknown: Embracing Uncertainty to Advance Aquatic
Remote Sensing. J. Remote Sens. 2023,;3:0070.

Email: mortimer.werther@eawag.ch
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