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1. The cone of uncertainty
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The cone of uncertainty
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https://freshspectrum.com/cone-of-uncertainty-cartoons/



Rrs uncertainty

The omnipresence of uncertainty in aquatic remote sensing

pp z =  ϕf∫λaph(λ)E0(λ)dλ

E.g.: primary production (PP) at depth (z) after Lee et al., 1996:

aph(λ) = a λ −  aw λ  − aCDOM+NAP(443)e−S(λ −443) 

Rrs(𝜆) =
𝐿𝑢(𝜆)

𝐸𝑑(𝜆)
 ∝ f/Q 𝑏𝑏(𝜆)

𝑎+𝑏𝑏(𝜆)

Atmospheric correction:

E.g.: absorption by phytoplankton: 
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Lt(λ) = Lp(λ) + Lr(λ) + t(λ)Lw(λ) + La(λ)

Remote sensing reflectance (Rrs):

IOP uncertainty

Downstream product uncertainty



Representation in aquatic remote sensing literature?
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Based on: 100 research articles on aquatic remote sensing published in major journals in 2021–2023 (20 articles 
per journal) from:
1. Elsevier’s Remote Sensing of Environment volumes 284 to 290
2. Elsevier’s International Journal of Applied Earth Observation and Geoinformation volumes 104 to 117
3. MDPI’s Remote Sensing volumes 15(3) to 15(7)
4. Frontier’s Frontiers in Remote Sensing volumes 2 to 4
5. IEEE’s IEEE Transactions on Geoscience and Remote Sensing volumes 60 to 61.



2. Uncertainty: Background – Error vs. Uncertainty
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Error sources
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Systematic error: Affects the accuracy of a measurement, i.e. how much an estimated 
value differs from a “true” reference value. 

Random error: Affects the precision of a measurement, i.e. the dispersion between 
multiple individual measurements of the same quantity, creating an uncertainty on the 
result.

IOCCG (2019). Uncertainties in Ocean Colour Remote Sensing. Mélin F. (ed.), IOCCG Report 
Series, No. 18, International Ocean Colour Coordinating Group, Dartmouth, Canada.



Systematic error sources: Rrs example
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Random error sources
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Stems from unpredictable / stochastic variations in a sample, measurement process or data processing, 

causing uncertainty in individual values. Sources include:

1. Spatial and temporal variability in a sample/pixel

2. Surface glint and wind effects

3. Thermal or photon noise in a sensor

4. Human error



Analytical uncertainty propagation: Uncorrelated uncertainties
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Uncorrelated uncertainties occur with measurements that have independent error sources. For example
in situ vs satellite-derived radiometric products.

Analytical propagation typically uses derivatives to express the sensitivity of a variable y to small 

changes in a variable x due to uncertainty. In the simple case of independent variables with 

uncorrelated uncertainties, this leads to the familiar sum-of-squares method:



Analytical uncertainty propagation: Correlated uncertainties
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Correlated uncertainties arise when measurements share common error sources or are influenced by 
the same underlying factors.

For this more general case of multiple correlated variables, the Jacobian matrix J is used with Σx, Σy the 
covariance matrices for multidimensional variables x, y:

See: Guide to the expression of uncertainty in measurement (GUM) or the 
IOCCG 2019 report.



Numerical uncertainty propagation: Monte Carlo simulation
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Let's assume we are measuring a physical quantity that depends on two variables, X and Y, where both 
variables have associated uncertainties. We'll calculate a derived quantity Z as Z = X + Y
• X has a mean of 10 and a standard deviation of 1.
• Y has a mean of 5 and a standard deviation of 0.5.



3. Embracing uncertainty: The benefits
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“Embracing uncertainty means recognizing its inherent presence, actively incorporating it into research and 
decision-making processes, leveraging it as a driving force for innovation and for gaining a deeper 
understanding of aquatic remote sensing models and products.”

... and is more than just providing an uncertainty estimate alongside a RS product

Code: https://github.com/mowerther/BNN_2022

Werther, M. and Burggraaff, O. (2023): Dive Into the Unknown: 
Embracing Uncertainty to Advance Aquatic Remote Sensing. 
J. Remote Sens. 2023;3:0070.



Example A: Targeted improvement through uncertainty analysis
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… by quantifying the contributions of each input to the overall uncertainty.

Consider the measurements of Chla through a fluorometer for in situ data:

Which parameter contributes most to the uncertainty in Chla?

here:
• Vf is the sample volume
• Vex is the extraction volume
• Fo and Fa are the fluorometer readings before and after acidification 
• and Fm and Fs are calibration constants



Example A: Targeted improvement through uncertainty analysis
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Consider the following values from an actual experiment:

Fo = 680 ± 2 
Fa = 395 ± 2 

Vex = 0.0052 ± 0.0001 L, and Vf = 0.2880 ± 0.0005 L 

with empirically determined calibration factors:
Fm = 1.95 ± 0.05 and Fs = 0.32 ± 0.02.

Chla = 3.39 ± 0.24 μg L−1

Propagation into 𝜎𝐶ℎ𝑙𝑎 through sum-of-squares analytical method:



Example A: Targeted improvement through uncertainty analysis
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Which input contributes most to the uncertainty in Chla?

The uncertainty in Chla was dominated (90.1%) by the calibration factors Fm and Fs, with only 9.9% coming 
from measurement uncertainty. 

In practical terms: improving the calibration process was more effective for this experiment in reducing 
uncertainty in Chla than repeated or more precise lab work -> where to spend your time/funding.



Example B: Validation and match-up analysis
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How different are the values we compare (without knowing the uncertainty associated with them)?

Improved match-up analysis and regression through
the application of weights based on uncertainty in x
and y resulted in 2.5 x lower error when compared to
unweighted regression.

Match-up validation: in situ Rrs vs. satellite-derived Rrs

Without quantified uncertainty, 
findings may  be 
misinterpreted.



Example C: Decision-making
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3. Example C: Decision-making
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• Let’s assume a Chla value of 7 mg m-3 obtained through satellite remote 
sensing (typical uncertainty for complex waters: 20-100%).

• Here: with an uncertainty of 30% (normally distributed).
• Then the observation results in Chla of 7.0 ± 2.1 mg m-3.

Approximately 32% of the associated probability density overlaps with the eutrophic 
range, indicating a significant probability that the water body is in fact eutrophic.

uncertainty can guide decision-making and forecasting.



3. Example D: Atmospheric correction (AC)
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Werther et al., 2022: A Bayesian 
approach for remote sensing of 
chlorophyll-a and associated retrieval 
uncertainty in oligotrophic and 
mesotrophic lakes, Rem. Sens. Env. 
(283), 113295.



3. Example D: AC algorithm selection
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let the expressed 
uncertainty decide for you, 
when a decision-making 
criterion is unavailable.



4. Concluding remarks
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Uncertainty is inherent in all aspects of aquatic remote sensing, but often remains unaddressed.

The advantages of embracing it are clear -> Uncertainty causes us to challenge our assumptions, refine 
our models, and enhance methodologies.

However, the journey to understand and effectively managing uncertainty can be a long-term endeavor, 
and may take years to discover, validate and incorporate into new approaches. 

-> Work with uncertainty, rather than against it

Werther, M. and Burggraaff, O. (2023): Dive Into the Unknown: Embracing Uncertainty to Advance Aquatic 
Remote Sensing. J. Remote Sens. 2023;3:0070.

Email: mortimer.werther@eawag.ch
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