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The Arctic Ocean
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https://www.pngwing.com/en/free-png-pouia

● Important seasonal and perennial global ice 
formation, with implications towards global 
climate

● Warming rate: ~3.8 times the global average

● Min sea ice extent shrinking: ~13% per decade 
(1979-present)

● Arctic summers forecasted to be “ice-free” as 
early as 2035 

● Freshwater (low-salinity anomalies) exported 
to N. Atlantic impacts global-scale ocean 
circulation AMOC

N. Atlantic



● Salinity governs the density structure of the quasi-isothermal 
Arctic Ocean

○ Influences ocean dynamics (e.g., circulation, vertical mixing), 
sea ice formation/melt, and ecosystem health

● Polar vertical stratification and overturning regulated by:
○ Saline water (Atlantic inflow, sea-ice growth) 
○ Freshwater (river input, sea-ice melt)

● Accurate salinity measurements enable understanding climate-
related changes and enhanced model representation/prediction 
of the Arctic’s state and dynamics
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Salinity in the Arctic Ocean

Schematic: Formation of the 
cold halocline and vertical 
stratification of the Arctic 
Ocean. [Metzner et al. 2020] 

Distribution of the major water mass in the Arctic
Ocean along a vertical section from Bering Strait
over the geographic North Pole to Fram Strait. As
the stratification is stable, deeper water masses are
denser than the layers above. [Gonçalves-Araujo,
Rafael (2016)]
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Arctic Observations
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Pros: 
● Global coverage
● Uniform temporal coverage

Cons: 
● Indirect measurements
● Restricted to sea surface (skin) in open water
● Diverse sources of errors:

Pros: 
● Direct measurement
● Subsurface ocean

Cons: 
● Non-uniform spatial and temporal distribution
● Constrained by environmental conditions and 

remote locations
➢ Radiometer
➢ Antenna
➢ System pointing
➢ Solar & Galactic noise
➢ Ionosphere

In situ Measurements Satellite Missions

➢ Atmosphere
➢ Rain (total liquid water)
➢ Sea Surface Roughness
➢ Sea surface temperature
➢ Land/Ice contamination

[WHOI] Sea State and Boundary Layer Physics of the Emerging Arctic Ocean - ONR

Soil Moisture Active Passive 
(SMAP)

https://smap.jpl.nasa.gov/

Soil Moisture and Ocean Salinity 
(SMOS)

http://www.esa.int/SPECIALS/smos/

Also: Aquarius (ended 2015) and CIMR (future mission)



Satellite Salinity Retrievals
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- The relationship between conductivity and salinity allows for 
the remote sensing of salinity

- SMOS/SMAP at a frequency band 1.4 Ghz (“L-band”)

- Brightness temperature (TB) can be related to the surface 
seawater's temperature and dielectric coefficient.

S - Salinity
T - Temperature
f - electromagnetic frequency

Brightness Temperature: TB Relative Dielectric Constant: ε(f,S,T) 

ε(f,S,T)



Research Outlook
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1. Improve the accuracy of bulk salinity predictions by leveraging in situ data and a 
machine-learning-based approach (Generalized Additive Model; GAM)

2. Develop a comprehensive GAM calibration process, addressing biases and 
ensuring robust generalization to diverse marine conditions

3. Enhance the methodology for bias-corrected bulk salinity, contributing to more 
reliable and precise predictions

4. Generate a gridded bulk salinity product for integration into ocean models, 
facilitating data assimilation and operational applications

Develop a robust methodology for a bias-corrected, satellite-derived near-surface 
(“bulk”) salinity product in the Arctic region to enable exploiting satellite measurements 
at high-latitudes for numerical modeling

Research 
Goal

Objectives



Research Outlook
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● Advance understanding of the intricate relationships between SSS, ocean state & 
dynamics, biogeochemical factors, and climate trends in the Arctic

● Provide a methodology to improve the representativeness and bias-corrections of 
satellite salinity measurements at high-latitudes

● Increase the usability of satellite SSS data, improving temporal and spatial coverage 
while enhancing data assimilation in ocean models.  

● Facilitate more accurate forecasting of SSS, aiding in climate research and contributing 
to informed decision-making in the face of ongoing Arctic environmental changes.

Scientific 
Impact

Scatter diagrams of Arctic Ocean (Beaufort Sea) sea surface salinity (SSS) of Seasonal Ice Zone Reconnaissance Surveys (SIZRS; 2 m) to (a) satellite missions, 
and of SIZRS (5 m) to (b,c) ocean model simulations, and (d) in–situ observations during SIZRS AXCTD drops. Black line signifies equivalent salinity values 
(psu). [Hall et al., 2022]

Satellites Models Models Obs



Figure. Arctic Ocean with in situ measurement locations between 
0-5 m and June 2010 - Dec. 2022.

Data 

8

Satellite Sea Surface Salinity

JPL’s SMAP L2

ESA’s SMOS L2

04/2015 - 12/2022

06/2010 - 12/2022

In Situ Measurements 

OAFlux Parameters

SMAP: https://smap.jpl.nasa.gov/ SMOS;  http://www.esa.int/

SUMD Surface Underway Marine Database (NOAA/NCEI) 06/01/2010 - 12/31/2022

WOD World Ocean Database (NOAA/NCEI) 06/01/2010 - 09/15/2022

MEOP Marine Mammals Exploring the Oceans Pole to Pole 06/01/2010 - 05/09/2018

OMG Oceans Melting Greenland (NASA) 07/07/2016 - 09/16/2021

MOSAiC Multidisciplinary drifting Observatory for the Study of 
Arctic Climate (NOAA/PSL)

07/01/2020 - 07/28/2020

SD Saildrone - Arctic 2019 Expedition (NOAA, NASA) 05/18/2019 - 10/08/2019

SASSIE Salinity and Stratification at the Sea Ice Edge 
(NASA)

08/11/2022 - 10/05/2022

WHOI OAFlux Project: Objectively Analyzed air-sea Fluxes (OAFlux) for the Global Oceans
https://oaflux.whoi.edu/data-access/

Latent Heat Flux (QLH); Sensible Heat Flux (QSH); Wind speed at 10m (U); Specific air humidity 
at 2m (qa); Air Temperature at 2m (Ta); Sea Surface Temperature (Ts); Moisture flux/ocean 
evaporation (Evp)



Satellites

Salinity Observations
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Figure. NASA’s SMAP salinity [psu] average 
during April 2015 - Dec. 2022.

In situ 

Figure. ESA SMOS salinity [psu] average during 
June 2010 - Dec. 2022.

Figure. In situ (0-5m) salinity [psu] average 
during June 2010 - Dec. 2022.



Methodology
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1. Initial data (satellite, in situ, and OAFlux parameters) are co-located within 50 km and 3.5 days
> In situ data: ~80% train the GAM, ~20% cross-validate output

1. Machine-learning-based approach, GAM, predicts salinity bias to original satellite observations

2. Output: bias-corrected near-surface bulk salinity product

1 2 3



GAM: Generalized Additive Model
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Using the GAM
● Machine-learning algorithm to predict salinity bias between in situ and satellite data between 0 - 5 meters
● Incorporates smooth functions and linear components: captures nuanced spatiotemporal patterns 

associated with SSS, considering factors such as OAFluxes, systematic satellite errors, and geographical 
coordinates

Why GAM?
● Offers a flexible and interpretable framework that accommodates the complex and non-linear 

relationships inherent in the dynamic marine environment
● Has a history rooted in statistical regression techniques: similar to a linear regression model, but allows 

for the non-linear combination of variables to estimate our target variable (salinity bias)
● Predictions are made by using predictors as inputs. Aims to balance salinity bias and variance of its 

predictions through a regularization term. This regularization term prevents the machine-learning method 
from over-fitting to a particular training dataset

● Cross-validation is done to guarantee that the GAM does not overfit to the training data and to verify the 
predictions are accurate
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GAM: Calibration Process

A) Calculate thermodynamic properties and empirical coefficient ("λ"):
At each location and time:

[from: Yu (2010)]

B) Calculate salinity bias (used as the response in GAM formula)

C) Use GAM to predict bulk-salinity bias in satellite-derived SSS data

D) Average salinity biases over satellite data period

E) Add temporally-averaged bias correction term to satellite-derived 
SSS



> Bias-correction algorithm 
(GAM) reduced the root-
mean-square error when 
comparing in situ salinity 
with skin (satellite) salinity 
versus when comparing in 
situ salinity with the 
computed bulk salinity

Context
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Comparison between in situ salinity and (a,c) satellite-derived salinity and (b,d) GAM-produced bulk salinity. The top row uses BEC’s SMOS salinity while the bottom row
utilizes NASA’s SMAP salinity. Deeper blue regions correlate to denser points and individual dots represent outliers. The dashed line indicates salinity of equal psu. The
root-mean-squared error (RMSE) are shown for each comparison. [Adapted from Trossman & Bayler, 2022]

Bulk salinity [psu]Satellite salinity [psu]

Satellite salinity [psu] Bulk salinity [psu]

BEC’s SMOS

NASA’s SMAP



Current Efforts
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Salinity [psu]

● Mitigating large satellite salinity values 
due to land/ice contamination, 
particularly at the sea-ice edge and 
the edge of Greenland

● Evaluating different parameterizations 
in the GAM, aiming to explain a higher 
percentage of deviance (best: ~77.8%)

● Refining methodologies by comparing 
different spatiotemporal thresholds 
during the co-location and cross-
validation processes

Salinity biases [psu] between the GAM-produced bulk salinity minus untrained in situ observations 
(0–5 m) between June 2015 – Dec. 2022 in the northern high-latitudes (55 – 90°N).



Spatial & Temporal Thresholds
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Thresholds used: 3.5 days & 50 km

1-day 2-day 3-day

Expanding thresholds to: 1, 2, 3 days @ 50 km, 37.5 km, 25 km, & 12.5 km (12 total combinations)

Satellite [SMOS] swath revisits



Broader Impacts
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Extended Applications
● Our algorithm is extensible to different depth ranges, providing adaptability 

of the bias-corrected bulk salinity to model top-layer thickness
● This methodology, applicable to both the Arctic and Antarctic regions, has 

uncertainties subject to the temporal-spatial resolution of the training data

Blue Economy
● Prediction of sea-ice growth/melt, enabled by integrated salinity impacts, 

will inform on Arctic accessibility in the near future
● Large economic opportunities and risks: shipping, fisheries, oil/gas mining, 

deep-water resource extraction, and tourism

Connections to other projects
● CEFI - Climate-Ecosystems-Fisheries Initiative
● ESA’s Copernicus Imaging Microwave Radiometer (CIMR) mission (launch 

expected 2029)
● UN Ocean Decades

https://sciencing.com/marine-ecosystem-classification-38170.html

https://www.oceansnorth.org/en/canada-arctic-marine-atlas/



● Salinity is vital for understanding Arctic Ocean dynamics, with further effects on the global 
thermohaline circulation and climate

● GAM reduces the root-mean-square error (RMSE) between satellite SSS and in situ salinity (0–
5 m) in the Arctic Ocean and subarctic seas; further refinements should focus on regional 
characteristics and methodologies

● Enhancing the GAM through refining input data quality, adjusting interaction terms, applying 
different spatiotemporal thresholds, and evaluating residuals for patterns or systematic errors 
may help reduce the RMSE further

● Increasing the usability of satellite SSS data improves temporal and spatial coverage while 
enhancing data assimilation in ocean models
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Conclusions

Reference:
Trossman, D., and E. Bayler (2022), An Algorithm to Bias-Correct and Transform Arctic SMAP-Derived Skin 
Salinities into Bulk Surface Salinities. Remote Sens., 14, 1418. https://doi.org/10.3390/rs14061418
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