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Topics for today

e | am discussing the motivation behind an experiment to
assimilate the short-wave infrared radiances (SWIR = 2000-
2800 cm1) from the Cross-Track Infrared Sounder (CrlS)

— Topic #1: History of the SWIR instruments
— Topic #2: The Pro’s and Con’s of using the SWIR

 The experiment is designed to answer the following

guestions:
— Can the SWIR add additional information?
 Topic #3: Radiance vs. Brightness Temperature DA
e Topic #4: Spectral Purity
 Topic #5: non-LTE
— Can the SWIR replace the LWIR for the next generation of sounding

Instruments?
e Topic #6: What is the future for IR sounding instruments?2




TOPIC #1: A LITTLE HISTORY
OF HYPERSPECTRAL
SOUNDING INSTRUMENTS



1980’s began the launch of microwave and
Infrared sounders for weather forecasting

e 1977 Lewis Kaplan published
idea that SWIR (2000-2800 cm-1)

has unique sounding properties.

— See Kaplan, Chahine, Susskind Searl
1977 Applied Optics v.16 p.322-324.

e 1989 Dave Wark writes the
NOAA specifications for a
hyperspectral infrared sounder
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1990’s: The AIRS Science Team iIs formed
and implements the NOAA requirements

* Advanced the design of microwave + infrared advanced
sounding instruments.

 Developed advanced forward models for the microwave
and infrared.

— Major investment in low noise, high spectral resolution SWIR

 Developed an algorithm approach that merged numerous
concepts, including the use of the SWIR for sounding.

David Wark, Bill Smith  Phil Rosenkranz Larrabee Strow Catherine Gautier Larry McMillin ~ Alain Chedin
Hank Revercomb  Roberto Calheiros Joel Susskind Moustafa Chahine Mitch Goldberg George Aumann



The first (and only) AIRS instrument was launched on
the NASA EOS Aqua Platform May 4, 2002
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AIRS Version.5, fully exploiting the SWIR and the basis for
NUCAPS, has been operational at NASA since 2007




Example of 15 um band radiance measurement
from AIRS 1st operational day, Sep. 6, 2002
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The NOAA-Unique Combined Atmospheric Processing
System (NUCAPS) was envisioned in late 1990’s.
NUCAPS leverages the lessons learned by NASA AIRS Team

NASA/Aqua
1:30 pm orbit
(May 4, 2002)

Suomi-NPP & JPSS
1:30 pm orbit

(Oct. 28, 2011, Nov. 18,
2017, 2021)

9:30 and 1:30 orbits provide information
at critical times in the diurnal cycle

EUMETSAT/METOP-AB, C

Research Project Plan (RPP) 9:30 am Ol’bit
Radiance Products and Oct 19’ 2006’ Se ) 17, 2012,
Advanced Infrared and Microwave ( Nov. 7, 20?[8)

Sensors for Weather and Climate
Applications.

May 19, 2004 Discussions at 1999 ITOVS
- \ and OSA meetings led to the

a‘f#w )
;@3 2004 NOAA Research Plan
k.4 to implement NUCAPS P

Chiistopher O Baenet




First IASI instrument was launched on the EUMETSAT
MetOp-A Satellite on Oct. 19, 2006

IAS| HIRS  AVHRR

Soyuz 2/Fregat launcher,

Baikonur, Kazakhstan

NUCAPS, using IASI SWIR, has
been operational since Dec. 2008




First CrIS/ATMS was launched on the
NPP Satellite on Oct. 28, 2011
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Spectral Coverage of Thermal Sounders & Imagers
(Agqua, Metop-A,B,C, Suomi-NPP, NOAA-20+)
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What is important for sounding is signal
to noise

Per channel noise is shown as noise equivalent delta
temperature (NEAT) at a cold scene temperature (T=250 K)

per channel noise (NEAT) at T=250 at instrument resolution
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So where are we today?

It has been 42 years since Kaplan, Chahine
and Susskind noted the advantage of the
SWIR In sounding.

It has been 30 years since Dave Wark wrote
the hyperspectral sounding requirements.

It has been 16 years since the AIRS ST
demonstrated the benefits of the SWIR.

It has been 14 years NOAA laid out a plan to
exploit 30+ years of hyper-spectral assets
with the lessons learned from the AIRS ST,




TOPIC #2: SO LET'S TALK
ABOUT THE PRO’'S AND CON'S
OF USING THE SWIR

14



The Advantage of High Spectral Resolution
IS Improved Vertical Resolution (selectivity)
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These instruments really measure radiance

that is, energy/time/area/steradian/frequency-interval

Microwave LWIR MWIR SWIR - .
Planck Function versus temperature ThIS IS
oo 300 | 1000 what we
. 100 really
Too| f rof measure.
x / a.1 ehev/(kT) _ 1
Q 5.0 1(':!0 ‘I.‘.';O 200 o 5L'.IlD 10.00 15I00 20.00 25I00 3000
Frequency, GHz Waovenumber, cm—1
Brightness Temperature
320 . Y J 320F ¥ ! 5
Q - 22 - sl 2y
300 S & 1 300 - -
P S B This 1s how
E’_ 260 | 280f we Usua”y
e | =k show it.
270 1 220
TTc | DO 200k - ; : : ,
Q 50 100150 200 o 500 1000 1500 2000 2500 3000
Frequency, GHz Wavenumber, em—1
To Convert to Brightness Temperature = Find Temperature where the 16

Planck Function is equal to measured radiance at a given frequency.



The SWIR Is ~3x more sensitive due to
the non-linearity of Planck function
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This is due to the
derivative of the
Planck function

Cold scenes are
significantly more17
sensitive.
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Moisture Channel Kernel Functions
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Pro’s and con’s of SWIR vs. LWIR
T R swR

Interfering gases in CO2 bands H20, O3, HNO3 None

Exploit the use of N20O sounding No YES

Vertical sounding range 1 hPa to surface 20 hPa to surface

Influence of solar radiation negligible Must handle non-LTE
and surface reflection

Planck function linearity 1st order linearity Highly nonlinear

Instrument Noise sensitivity to Can Assimilate BT'’s Noise is stronger

scene temperature (not really truel!!) function of scene T

FWHM of T(p) Kernel Fnct's 4 km 2 km

Future instruments: Detector Higher Power More COTS options

technology and optics. Requires Cold T's

NOTE: All of the items in SWIR column been resolved by the AIRS science

team & implemented in NUCAPS-IASI and NUCAPS-CrIS systems. 19



TOPIC #3: RADIANCE VERSUS
BRIGHTNESS TEMPERATURE
DATA ASSIMILATION

20



One of the biggest outcomes of this
experiment might be communication

Data assimilation and retrievals are the same math, but
there are many differences, for example:

» Retrievals do not “inflate” the observation error.

» Retrievals can explicitly add “geophysical errors.”

» Retrievals never convert observations to brightness temperature
because observed radiances can go negative!

Instrument noise can be difficult to characterize exactly,

but it is usually more linear in radiance space.

— Retrievals handle spectral correlations, noise as a function of
scene temperature, and other effects.

Having retrieval, instrument, and DA folks in the same

room, looking at details of how things are done,

matters!

21



Simplified view of how things are done

Data Assimilation

Observations Radiance, R <(n) Brightness Temp., ©,.(n)
Forward Model SARTA R_,(n,X) X=state CRTM R_(n,X) X=state
Conversion G(n,X) =8B /6T(Nn, O,(N)) 0,=B,1n, R)
Signal, S [ Robs(n) B Rcalc(nix) ] / G(n,X) ®obs(n) B ®calc(n)
- ®obs(n) B ®calc(n)
Noise, N NEAN(n) / G(n,X) NEAT(n)
~ NEAT(n, X)
SIN [ ®obs(n) - ®calc(n) ] / [ ®obs(n) - ®calc(n) ] /
NEAT(n, X) NEAT(n)

« When minimizing the cost function, we are effectively
minimizing the square of S/N

e Saying it is radiance assimilation is misleading, it really
IS brightness temperature assimilation. 22



But nothing in life Is free.

 The instrument NEAT Increases non-
linearly for cold scene temperatures

Scene LW LW MW MW SW SW
BT NEAN NEAT NEAN NEAT NEAN NEAT

200 K 0.05 0.09 0.03 0.65 0.0046
250 K 0.05 0.04 0.03 0.12 0.0046 0.5
300 K 0.05 0.03 0.03 0.04 0.0046 0.07

* Note that for a constant NEAN Note: This issue has

— LWIR NEAT varies by 3x recently been raised
— MWIR NEAT varies by 16x by Larrabee Strow &

- IS SDR T
— SWIR NEAT varies by 100x Cl eam

* In the SWIR it Is critical to use radiance, not
brightness temperature, as the operator 23




TOPIC #4: SPECTRAL PURITY

24



Molecular Vibrational Modes
(Example: CO,)

« CO, has 4 modes of vibration. Each is quantized.

* Energy of vibrational mode is given by

v, IS symmetric stretch (not active in infrared due to lack of dipole
moment) but does interact via Fermi resonance with v,

Vv, IS a bending that is doubly degenerate

v, is an asymmetric stretch o090 o-0-0 00
ANy | t

*—eo o
4_0 C_-g_- 0 o] 0 O:G O_-
= v, (1 1 1. =
E,p, =2 hcv-(i+%) fori,=0,1,2,...
symmetric stretch bending (rotational asymmetric stretch
1388.23, no radiation degeneracy) 667.40, 2349.16, no Q-branch
Q-branch
Isotope transition band S d it g
::03 — 04%0 1
12C160160 00° - 010 667.38 194 1.56 sl \ 1 04%0 Y
bands
01'0 = 0220 667.75 15 0.78 ¢ ' T
1 0 il 03'0 | 15 um
010 - 1090 720.81 5 1.56 b
010 > 00°% 618.03 |4 1.56 C . fundamental
0220 - 03230 688.11 0.85 0.78 .
A A 01'0 J
1000 > 110 647.06 | 0.7 1.56 T
15 um fundamental
13C160160 00°0 - 010 648.48 2.01 1.56 e v
ground e 000 ———
12C180160 00°0 - 0110 662.37 | 077 | 156 s 25




Rotational Modes

 The energy of rotation Iis quantized and given by
- E, =hcBj-(j+1), j=0,1, 2,3, ...

e But as the molecule rotates it also has centrifugal
forces
— B = hc-(B-J-(+1) - D'jz'(j+1)2

P-branch lines form when Aj = +1
Q-branch lines form when Aj= 0

R-branch lines form when Aj =-1

LINE STRENGTH




All the Physics is Contained Iin a quantity
called the Absorption Coefficient

« The absorption coefficient is J N;- S i
a complicated and highly > BB TS B e G e
non-linear function of
molecule i and line j Where width of line, y;, is a function of the

molecule structure (natural broadening),

* Line Strengths, S”, result temperature (doppler broadening) and pressure
from many molecular (collisional broadening)
vibrational-rotational ~
transitions of different 5 % po To

molecular species and
Isotopes of those

species(blue). %EWMMMWWWMWWMWMMN\MJ)Mﬂbﬁlllllhﬂmmmwmﬁm

Line strength (at T=300K) of CO2, H20, it 15 g
and O3 in the 15 um band. :

nesrnan. . asoatneionor 1= Ly ]l by 114 w

temperature

2

(1-EXP(1-1.439v/T))3 Raw §
S(T) = S(Tg)-(T/Tg)wmrmmrmmmmmmmsemsemsmmenmnneees iE -
(1-EXP(1-1.439v/Ty))® .«




Example of vibration rotational line

strengths in 15 um band region

600 to 700 cm™?

700 to 800 cm™?

W0 in the 0550cm™' ragisn (5.0 g/fkg)

HyD in the 0750cm™ region (5.0 g/kg)
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Example of vibration rotational line
strengths in 4 um band region

2100 to 2200 cm™1 2200t0 2300 cm1 2300 to 2400 cm™?
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TOPIC #5: NON-LTE
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How big is the non-LTE effect?

CRTM simulation of a channel pair difference
SWIR 2336.25 cm-1 minus LWIR 667.50

Non-LTE effect is ~5to ~10 K in daytime

160 W 140 W 120 W 100 W B0 W 60 W &0 W IO W 0 20E #E GE SOE 0E 120E 90 E 160 E 180 E

This figure stolen from
Zhenglong Li (CIMSS)

Bias in AIRS SWIR region for
daytime radiances versus
solar zenith angle

Need to correct for non-LTE
from 2255 to 2383 cm-1

From DeSouza-Machado
2007 GRL, Fig. 3
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We know how to correct for non-LTE.

The use of the Planck function assumes a Boltzmann
distribution in the population of energy states — called
thermodynamic equilibrium or LTE

Channels sensitive to high altitudes do not have enough
molecular collisions to achieve equilibrium — called non-
LTE

AIRS Science Team dealt with this issue and employed an
algorithm to correct for non-LTE effects (DeSouza-
Machado 2007 GRL)

NASA/AIRS ST and NOAA NUCAPS Teams have
demonstrated that the SWIR + LWIR can be used for both
day and night without introducing day-night artifacts.

Non-LTE correction is in the CRTM (Chen 2013 JAOT) -



TOPIC #6: WHAT IS THE FUTURE
OF INFRARED HYPERSPECTRAL

33



Example of technologies enabled by using SWIR:
A NASA/JPL CubeSat Instrument called CIRAS

oooooooooo IRCameras

Spacecraft
FPA

HOTBIRD
(JPL)

Camera Electronics

(IR Cameras) Optics Assembly

(Ball)

Dewar (IDCA)
(IR Cameras)

Element 1

Stepper Motor + Blackbody
Mirror Assembly Immersion
(Lin Eng) Black Silicon Grating (JPL)

Payload
Electronics

Cryocoolers +
Electronics
(Ricor K508N )

Entire satellite can fit in 6U (60x10x10 cm) enclosure! 34




Advantage of the SWIR might be most
iImportant for future instruments

-

AIRS 116 x 159 x 95
|ASI 120 x 110 x 130 236 210
CriS 80 x 47 x 66 147 106
CIRAS 10 x 20 x 30 4 29

* Low power {and lower noise} detectors can
drive the entire design of instruments and
satellites.

 Low mass, power, and size will have
significant implications for schedule and
launch of these instruments. 35



Summary of the experiment

« NOAA/OPPA has funded a study to study the
Impact of the CrIS SWIR in DA

— We will account for non-LTE, solar surface reflection,
scene dependent noise, etc.

My NOAA co-authors will perform an OSSE.

— The CrIS instrument is being used as a proxy for future
Instrument concepts, such as CIRAS.

— CrIS-FSR is also operationally relevant to NCEP.

— We will develop QC, thinning, and bias correction
schemes suitable for SWIR.

— We will also evaluate radiance data assimilation versus

brightness temperature data assimilation. e



QUESTIONS?
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Documents available

cell: (301)-789-6934 email: chrisdbarnet@gmail.com
Google drive short link: http://goo.gl/twuRtW

NOTES from UMBC classes, theory of remote sounding (PHYS741) and
numerical methods documentation (PHYS 640)

rs_notes.pdf (~17.5 MB, ~650 pages)
180702 _cuny_barnet.pdf (10 MB, 140 slides)
phys640 s04.pdf (~8.8 MB, 370 pages)

These are living notes, or maybe a scrapbook — they are not textbooks.

Those documents refer to other documents that are also on the google drive.
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Apodization Alters the ILS and Spectally
Correlates the Noise.

Interferometers measure interferograms 5 -
(green curve) signal as a function of R e — Coumo: Tl = 0308 o E
optical delay, & IR NN 3
Performing a inverse cosine tragsform ;o N 3
will yield the spectrum. 3 oof ‘\h etz
Un-apodized transforms (red) havea g 02k e - - =
SINC(x)=SIN(x)/x instrument line shape ot o5 AR 20
(ILS). | i
AIRS has a Gaussian ILS (black) L e = A —-
. . . = - H ———— L=1,000 cm SINC  FwHM=2.000 .
Apodization can produce a ILS that is T ) ! ]
localized and has small (< 1%) side I i
lobes. But the tradeoff is that the central & L T P S
lobe is wider and the signal is spectrally ¢ |
correlated between neighboring £ -0sl : : :
h I £ 0.0 0.5 1.0 1.5 2.0
channeils ¢ delay, § cm
Gaussian | Hamming Blackman Channel Gaussian Hamming Blackman
FWHM / 1682 | 1.5043 | 1.905 Spacing
FWHM(SINC) +1 70.74% 62.5% 75.5%
Random Roise 1.735 | 1586 | 1812 +3 250% | 133% | 31.6%
Maximum Side-Lobe | 0.45% | 0.73% | 0.12% +4 4.43% - 6.57%
% of signal in central 95.1% 87.5% 99.8% 15 0.38% - 0.53%
Lobe 39
+6 0.025% - -
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