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Overview
1.Tracking eddies in merged altimetry data
2.0bservations of ecosystems trapped within nonlinear eddies

3.Westward co-propagation of SSH and CHL



Observations of Nonlinear Mesoscale Eddies
SSH From TOPEX Only
and from the Merged TOPEX and ERS-1/2 Data (Ducet et al. 2000)
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Eddies of the California Current

eddies tracked in merged altimetry observations (Chelton et al., 2011)



Automated Eddy Tracking

tracks of long-lived eddies

(a) Lifetimes 2 16 weeks
Number Cyclonic=18469 Number Anticyclonic=17422
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Automated Eddy Tracking

tracks of really long lived eddies

(d) Lifetimes 2 52 weeks
Number Cyclonic= 2096 Number Anticyclonic= 2300
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Results from Application of an Automated Eddy Identification
and Tracking Procedure Applied to 16 Years of SSH Data

Distributions of Eddy Lifetimes and Propagation Distances
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Trajectory of NPGS RAFOS Float 109 in the California Current
31 August 2005 - 8 November 2006
(Courtesy of Curt Collins, NPGS)
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The depth range of the float was about 310-380 m.



Animation of NPGS RAFOS Float 109 in the California Current
31 August 2005 - 8 November 2006
(Courtesy of Curt Collins, NPGS)



Mesoscale Eddies in Altimeter Observations of SSH
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Mesoscale Eddies in Altimeter Observations of SSH

Dudley B. Chelton and Michael G. Schlax

The trajectories at 7-day time steps of approximartely 177,000 mesoscale eddies in the SSH fields in the AVISO
Reference Series are available for public access for the 16-year period October 1992 through December 2008. The
details of this eddy dataset and the characteristics of the eddies (their amplitudes, radius scales and rotational speeds)
are described in Chelton et al. (2011). The eddies retained in this dataset are restricted to lifetimes of 4 weeks or
longer.

The main text of this paper summarizes a detailed analysis of the eddies with lifetimes of 16 weeks and longer.

Appendices A.1 - A.3 assess the filtering properties of the objective analysis procedure used by AVISO to construct |
the SSH fields from which the eddies were identified and wacked.

Appendices B.1 - B.5 describe the details of the eddy identification and wracking procedure and Appendix C assesses,
the adequacy of the procedure.

Reference
Chelton, D. B., M. G. Schlax, and R. M Samelson, 2011: Global observations of nonlinear mesoscale eddies . Prog.'
Oceanogr., 91, 167-216. r:
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Disclaimer: These data are provided “as is". In no event shall the providers be liable for any damages, including without limitation, damages resulting from lost profits or
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Who is using the eddies database?




Summary: Automated Eddy Tracking

Chelton et al., 2011 Progress in Oceanography

eEddies are identified as close geostrophic streamlines in high-pass filtered
merged SSH fields

eEddies with radial scales of ~200 to ~ 50 km can be tracked in SSH fields
constructed by merging altimeters in different orbits.

eOver 150,000 eddies with lifetimes greater than 4 weeks have been
tracked over the last 16 years.

e The methodologies used to track eddies can be applied to a variety of
fields including SSH derived from eddy resolving ocean models to wide-
swath altimetry measurements (SWOT).



Where do eddies influence marine ecosystems?

the influence of eddies on marine ecosystems is regionally dependent

SSH—-CHL Cross Correlation
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Regions of positive correlation are associated with CHL blooms in anticyclonic eddies
Regions of negative correlation are representative of cyclonic eddies driving CHL blooms



The Oligotrophic South Indian Ocean

average log., chlorophyll-a from SeaWiFS 2001-2008




Eddies of the Indian Ocean

eddies tracked in merged altimetry observations (Chelton et al., 2011)



Observing Eddy-induced Ecosystem Perturbations
SeaWiFS True Color with Chlorophyll-a Overlaid
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Case Study: A long-lived Leeuwin Current Anticyclone

this particular eddy was tracked for a total of 122 weeks
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Even a full year after its formation, the core of this
eddy still contains a trapped phytoplankton bloom.
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Eddies Spawned from the Leeuwin Current

a total of 734 anticyclonic and 818 cyclonic long-lived eddies were tracked from 2000-2008




Composite Averaged Chlorophyll Anomalies

filtered SeaWiFS chlorophyll with contours of AVISO SSH
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What drives upwelling in the cores of anticyclonic eddies?



Eddy-Induced Ekman Pumping

In 2007 a ship survey of an anticyclone in the Sargasso Sea revealed a
large phytoplankton bloom at its core with primary production rates 4 x that
of the previously observed local maximum.

Dye released in

the core of the

anticyclonic eddy

was upwelled at a

rate estimated to be
~ 40 cm day’

Ekman pumping
rates calculated from
QuikSCAT compared
well to the rates
estimated from the
dye release.
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Eddy-Induced Ekman Pumping

How it works:
e The surface circulation of an eddy can induce Ekman pumping in a uniform wind
field.

Eddy Vorticity Ekman Pumping
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Eddy-Induced Ekman Pumping

We from eddy surf currents January Ekman Upwelling Velocity {cm :!.ay"j
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Risien and Chelton, 2008

e Eddy-induced Ekman pumping is of the same order of magnitude as basin
scale Ekman pumping



Composite Averaged Chlorophyll Anomalies

filtered SeaWiFS chlorophyll with contours of AVISO SSH
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Can eddy-induced Ekman pumping account for the spatial structure of
these CHL blooms?



Composite Averaged Chlorophyll Anomalies

filtered SeaWiFS chlorophyll with contours of QuikSCAT Ekman pumping
contour interval
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e Seasonally (May - September), we observed enhanced CHL at the cores of anticyclonic eddies.
¢ Negative CHL anomalies are a persistent feature of cyclonic eddies in this region.



filtered SeaWiFS chlorophyll with contours of QuikSCAT Ekman pumping (anticyclones)

Composite Averaged Chlorophyll Anomalies by Month
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What is driving the seasonal response of CHL to eddy-induced
Ekman pumping?



ARGO Floats

ARGO floats offer insight into the vertical structure of eddies

582,/84 profiles from 2001 through 2008
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ARGO float profiles can be
collocated with the locations
| of eddies.

Globally, 42% of all ARGO float
profiles occurred within the
interior of mesoscale eddys.

http://www.argo.ucsd.edu/



ARGO Float Profiles within Indian Ocean Eddies

ARGO profiles from which MLD seasonal cycle is calculated

ARGO profiles in anticyclones
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Seasonal cycles of MLD are calculated from the above profiles as a function of
eddy polarity.
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Seasonal Cycle of Mixed Layer Depth
ARGO float profile MLD from density algorithm
(Holte and Talley, 2009, http://mixedlayer.ucsd.edu/)

seasonal cycle of MLD from ARGO
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The biological response to eddy-induced Ekman pumping appears to be limited to times
when the average MLD within anticyclones exceeds 50 m.



The Seasonal Decoupling of the Mixed Layer from
the Nutricline

Winter-deep MLD Summer-shallow MLD
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Can we see evidence of this decoupling in climatological nutrient and stratification data?



The Seasonal Decoupling of the Mixed Layer from
the Nutricline

contour interval 0.1 mmol m=
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(World Ocean Atlas, 2005)



Conclusion 2: Eddy-Induced Ekman Pumping

Eddies of the Southern Indian Ocean

1.A wide variety of other datasets were collocated to these eddies for this
study:

- Chlorophyll concentrations from SeaWiFS and MODIS-Aqua

- Wind stress curl and hence Ekman pumping velocity from
QuikSCAT

- Mixed layer depth from ARGO floats

2.ARGO float observations provide valuable insight into the vertical struc-
ture of eddies tracked in merged altimetry observations.

3.Eddy-induced Ekman pumping appears to drive seasonal blooms in the
cores of anticyclonic eddies in the Southern Indian Ocean.

4.The seasonal nature of these blooms appears to be linked to changes in
mixed layer depth



Where do eddies influence marine ecosystems?

the influence of eddies on marine ecosystems is regionally dependent

SSH—-CHL Cross Correlation
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Regions of positive correlation are associated with CHL blooms in anticyclonic eddies
Regions of negative correlation are representative of cyclonic eddies driving increased CHL blooms



Westward Co-Propagation of SSH and CHL

Numerous past studies have noted co-propagation of SSH and CHL anomalies:

« Cipollini et al. (2001, Geophys. Res. Lett.)
« Uzetal. (2001, Nature)

« Siegel (2001, Nature)

« Uz and Yoder (2004, Deep-Sea Res.)

« Dandonneau et al. (2003, Science)

« Killworth (2004, Science)

« Dandonneau et al. (2004, Science)

« Killworth et al. (2004, J. Geophys. Res.)
« Charria et al. (2003, Geophys. Res. Lett.)
» Charria et al. (2006, J. Mar. Res.)

« Charria et al. (2008, Ocean Sci.)

« Gutknecht et al. (2010,

« Chu and Kuo (2010, Deep-Sea Res.)

« and others.......

All of these studies have attributed the observed
covariability to Rossby wave influence on CHL.

The southeastern subtropical Pacific has been a
region of particular focus and debate about the
detailed mechanism by which Rossby waves
influence CHL.

The high-resolution merged altimeter dataset
reveals that the physical influence on CHL is by
nonlinear mesoscale eddies rather than Rossby




Eddies of the South Pacific

region investigated by Dandonneau et al., 2003; Killworth, 2004; Dandonneau et al., 2004 and
Killworth et al., 2004

A Trajectories of eddies with lifetimes 210 weeks
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Eddy Composite Averages of Chlorophyll Anomaly

eddies along 20°S section
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Clockwise

N=1832
i r=1.3

E . . ~_ 1
-0.04 0.00 0.04

Anomaly logqo(CHL)




Eddy Composite Averages of Chlorophyll Anomaly

eddies along 20°S section

130°W-B0"W,
22°5—-18"s
Clockwise
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Global Composites of Chlorophyll Anomaly

northward CHL gradient

130°W-B0"W, Global, 15°—45°
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Global Composite of Chlorophyll Anomaly

northward and southward CHL gradient
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Reduced-gravity Quasigeostrophic Model

seeded with random Gaussian approximations of eddies around 20° in the Pacific




SeaWiFS Chlorophyll and QG Model

30-day average CHL smoothed 2°x 2°, QG model with 30-day relaxation time scale

Smoothed SeaWiFS Chlorophyll 2007-4-4

» &{'ﬁ

i\
B

125°W 115°W 105 °W 95 %W

s I, _-'\ . 3 ";-‘-
2. ok -i“f&t ’_2“,)-4» } y

o

& 9

-6500 -6000 -5500 -5000 -4500 -4000 -3500 -3000 -2500 -2000
km



Composite Averages of Tracer in QG Model

model eddies in a meridionally varying tracer

Model,
Weakly nonlinear

Clockwise
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Composite Averages of Tracer in QG Model

model eddies in a meridionally varying tracer
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Conclusion 2: Advection of CHL around eddies

the “dominant” mechanism

eThe collocation of CHL with the location and scale of eddies reveals that
eddies act to advect CHL

e Statistically, the dominant mechanism by which eddies influence oce-
anic chlorophyll is stirring of the ambient chlorophyll field by azimuthal
advection.

eGlobal eddy composite averages of chlorophyll are consistent with ed-
dies in the Southeastern Pacific and QG model of passive tracer with finite
relaxation time scale.

eRegionally, exceptions to this dominant mechanism can be observed
(Southern Indian Ocean)



Westward Co-Propagation of Chlorophyll and SSH

zonal section of filtered CHL and SSH along 20°S

- S5H-CHL Cross Correlation
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Westward Propagation of CHL and SSH

wavenumber-frequency power spectral density
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Westward Propagation of CHL and SSH

wavenumber-frequency power spectral density
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Westward Propagation of CHL and SSH

wavenumber-frequency power spectral density
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Westward Propagation of CHL and SSH

wavenumber-frequency power spectral density

e) SSH, QG Model
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Westward Propagation of CHL and SSH

wavenumber-frequency power spectral density

a) SSH, Observed ¢) logqg CHL
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Conclusion 2: The Westward Propagation of SSH
and Chlorophyll

mostly due to nonlinear eddies, not Rossby waves

e The observed westward co-propagation of CHL and SSH anomalies that
in the past have been attributed to linear Rossby waves is in fact due to
nonlinear eddies.

- Phase relation (cross correlation) between SSH and CHL

- Wavenumber-frequency spectra of CHL show that “most” of the
energy in the westward propagating quadrant is at higher frequencies
than allowed by linear Rossby waves.
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SST-Induced Ekman Pumping

SST’

How it works:
e Warm (cold) SST anomalies accelerate (decelerate) local winds resulting in a wind stress curl from
the crosswind SST gradient associated with the SST anomaly.
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Eddy-Induced Ekman Pumping

We from eddy surf currents January Ekman Upwelling Velocity {cm :!.ay"j
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Risien and Chelton, 2008

e Eddy-induced Ekman pumping is of the same order of magnitude as basin
scale Ekman pumping



