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Introduction
Motivation: How can we get the maximum benefit from GOES observations for forecasting?
• Radiance assimilation is physically-based (easy to interpret), but individual pixel 

information content saturates around optical depths of 160(8) during day(night) or 
composite reflectivity (REFC) of 20-25(0-5) dBZ, and does not use lightning information

• Machine learning is statistically-based (harder to interpret), but image gradients and 
spatial context provide reliable information to about 45 dBZ, and provides framework for 
using lightning information (data fusion)

Question: what is our neural network (NN) learning that provides such good skill?
Hypothesis: the skill comes from using information in image gradients and lightning

Data
• GOES-16 Advanced Baseline Imager (ABI)
• Channel 7, 3.9-micron, shortwave infrared window
• Channel 9, 6.9-micron, mid-level water vapor (~442 mb)
• Channel 13, 10.3-micron, clean longwave infrared window

• GOES-16 Geostationary Lightning Mapper (GLM)
• Group extent density

• Multi-Radar Multi-Sensor (MRMS) Quality-Controlled Composite Reflectivity
• All fields are resampled to 3-km Lambert Conformal Conic HRRR grid

Analysis Methodology
Our approach is to produce many models and interrogate them in order to open the lid of the 
“black box” and identify the strategies the NN is using that produce such good skill.
• Channel withholding experiments to identify the information content that is most 

important for producing skill in certain situations
• Comparing results using standard 3x3 convolutional filters with 1x1 filters in order to 

remove the spatial context and simulate an approach considering just individual pixels
• Use of attribution methods, such as Layer-wise Relevance Propagation, to visualize 

what information the NN is using to make a specific prediction
• Use of synthetic inputs to quantify the sensitivity of the output to variations in 

properties of the inputs
• Use of metrics that are unrelated to the loss function (MSE), such as: coefficient of 

determination (R2), categorical metrics at various output threshold levels (POD, FAR, 
CSI, Bias), and evaluation of the MSE binned over the range of true output values

Architecture
• Sequential structure based on U-Net
• Skip connections off: they provide 

very small improvements but 
complicate visualization

• 3 encoding and decoding layers, 
deeper produces overfitting

• 32 filters per layer, fewer do nearly as 
well but give blurry output

• 100 epochs validation statistics:
• RMSD = 5.29 dBZ
• R2 = 0.738

Loss Functions
• Standard unweighted MSE loss function has 

sub-optimal performance at high REFC
• REFC PDF ~ Exp(-5*y) where y=[0,1]
• Use performance diagram (right) to select loss 

function weights producing minimum bias
• Also select model (different random seeds)
• Generalized exponential: Wt = Exp(b*y c)
• The optimal coefficients (grid search) are b=5 

and c=4 (for MSE) and c=3 (for MAE)
• Connection to AUC approach but without 

derivative problems
• Acts as a global constraint on realism of fields

Dataset Construction
• Selected samples from the 92-day period 4/17/2019 

to 7/17/2019 during which there was abundant 
severe weather.

• Automatically select regions- and times-of-interest 
based on maximizing the number of SPC storm 
reports (tornado, hail, wind)
• 6-hour periods with 15-minute refresh
• 256 x 256-pixels on 3-km HRRR grid (768 km)

• Mode of 20-50 storm reports per day
• Top panel: geographic preference for Southern Great 

Plains and Upland South
• Bottom panel: temporal preference for mid to late 

afternoon
• Split: 80% / 20% for training / validation
• An independent training dataset (Hilburn et al., JSC 

2019) that includes nighttime and other locations 
produces similar results

Importance of Lightning
Given that gradients carry so much information, to isolate the importance of lightning, 
consider the 1x1 experiments.
• Adding lightning (Panel G) provides dramatic improvements for REFC > 35 dBZ but note 

that values between 20-35 dBZ are mostly absent
When gradients are included, lightning provides less relative value, but it still has unique 
characteristics.
• Panel L shows that combining lightning with C13 provides dramatic improvements in 

POD (0.52 vs 0.24) with reasonable FAR (categorical bias is near one)
• Unlike water vapor (Panel M) lightning is better able to pinpoint locations of strong 

radar echoes and provides dramatically better POD (0.52 vs 0.35)
• Panel O shows that other channels work together with lighting to provide the best 

estimates with sharp, well defined convective core features
The properties illustrated in this example of the skill provided by lightning and image 
gradients are confirmed in statistics across all validation samples.

Importance of Gradients and Spatial Context
Traditional infrared imager retrievals of precipitation, which only use individual pixel 
information or rudimentary spatial information, have poor skill (low POD and high FAR).
• Panel F simulates that type of algorithm, which has poor skill at REFC > 20 dBZ
• Adding water vapor (Panel H) helps a little bit, but not enough at high values

Allowing the NN to use gradient information and spatial context provides tremendous 
improvements in skill.
• Panel K shows that even with just C13, image gradients and spatial context carry a 

great deal of information about REFC > 35 dBZ
• Note that RMSD and R2 tell a limited story, and that categorical statistics are crucial for 

evaluating whether a model provides improvements
• Adding water vapor (Panel M) helps increase the POD in areas where the difference 

between C09 and C13 is small, but does this at the expense of a high FAR

Layer-wise Relevance Propagation

Summary and Conclusions
• We have shown that a convolutional NN trained on GOES ABI+GLM can accurately 

reproduce composite reflectivity from MRMS over eastern CONUS warm season
• We have shown the skill comes from gradients in infrared images and lightning and that 

lightning helps the network better interpret radiance gradients
• We used novel approaches to derive weights for the loss function and in our analysis 

methodology to evaluate the importance of image gradients and lightning
• A remaining question is how applicable will this NN be to different meteorological regimes, 

such as tropical convection, and what additional meteorological information will be 
needed to produce robust predictions globally?

• However the tools developed in this work will be applied to investigate those questions
• Goal: GOES-derived synthetic reflectivity profiles used where ground-based radar network 

coverage is poor for the RAP/HRRR latent heating initialization/assimilation
• Additional details about this work will appear in Hilburn et al. (2020, JAMC in preparation)
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Top row: GOES inputs (Panels A-D) and MRMS truth (Panel E)
Middle row: Predictions with 1x1 filters for various channel combinations
Bottom row: Predictions with 3x3 filters for various channel combinations 

Synthetic Inputs

• Top set: results with lightning
• Bottom set: lightning zeroed out

• Top rows: input fields
• Middle rows: image gradients
• Bottom rows: heatmaps

• Uses LRP with alpha=1 and beta=0
• NN uses the lightning value itself more 

than the lightning gradient (top set)
• Without lightning (bottom set), the 

network uses strong infrared gradients
• With lightning, the emphasis for the 

other channels is changed, looking at 
gradients in locations with lightning

• While the LRP percentage of lightning 
is only 12.9% in this case, it impacts 
the interpretation of the other 
channels, giving the NN additional 
clues of where to look, yielding a more 
accurate estimate of REFC

• A remaining question is how does the 
NN learn which strong gradients to 
ignore and which are important?

• Using a sum of Generalized Elliptical Gaussians model 
that provides six parameters for the inner and outer 
Gaussians: 1) location, 2) amplitude, 3) size, 4) aspect, 
5) orientation, and 6) sharpness (exponent)

• Evaluating 45K+ different parameter settings, the 
spatial patterns that most strongly activate the NN, 
based on maximum REFC, all resemble that shown to 
the right (top: synthetic input, middle: NN output)

• The NN has learned about thunderstorms with 
overshooting tops (OT)

• Note the very strong gradients along the anvil edge and 
along the OT edge, corresponding to large exponents

• The weakest responses have in common weak 
gradients and are the least physical looking

• Evaluating all the model parameters, the most 
influential are the inner and outer Gaussian sharpness

• An example of the sensitivity is given in right bottom 
panel, which shows the maximum REFC as functions of 
the inner and outer exponents

• The emergence of 35 dBZ echoes requires the outer 
exponent to be 1 or greater, or very large inner 
exponents around 8


