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 Depth-specific error statistics for model-estimated water depth

Landsat-8 SNPP Sentinel-3A
Ocean color sensor OLI VIIRS OLCI

Visible bands 443, 482, 561, 655 410, 443, 486, 551, 638, 671 400, 413, 443, 490, 510, 560, 620, 665, 674, 681

Revisit 16 days 1 day 1-3 days

Data access USGS NOAA NOAA

Processing software SeaDAS/L2GEN MSL12 MSL12

Atmospheric correction NIR-SWIR NIR-SWIR NIR

Question and Objective

Ocean color satellites allow for derivation of important biogeochemical

properties for global oceans. Limited to multispectral resolution, however, it

remains difficult to generate geophysical properties, e.g., water depth, over

global shallow waters with the satellite remote sensing reflectance (Rrs(λ)). This

study evaluate a new algorithm for practical application of multispectral ocean

color observations to the retrieval of water depth for optically shallow waters.

 A new algorithm is developed for shallow-water bathymetric estimation for

multispectral satellite ocean color sensors.

 Evaluation shows substantial improvement in the estimated depth product

over 0-30 m.

Performance Evaluation

Method and Algorithm

 Error statistics for model-estimated water depth (0.5-30 m)
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Ocean color community has invested great effort in shallow water remote sensing with

semi-analytical algorithms. An extensively tested algorithm is the so-called

hyperspectral optimization processing exemplar (HOPE) (Lee et al., 1998; 1999). A

shallow-water reflectance model is established as:

Bathymetry from Satellite Images

 Florida Keys

 The Bahamas

 Olowalu Reef (Maui, Hawaii)

Our new algorithm incorporates two independent Rrs(λ) spectra measured at the same

location in the spectral optimization, thus allowing to generate much improved

estimation for water depth with multispectral satellite ocean color observations. The

work-flow is schematically shown in below:

 Semi-analytical approach designed for hyperspectral Rrs(λ) 

 Two-spectrum optimization approach (2-SOA) for multispectral Rrs(λ) 
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Landsat-8\OLI SNPP/VIIRS Sentinel-3A/OLCI

The algorithm performance varies with the range of water depth under study.

Improved performance is observed for water depths over ~3-20 m in comparison to

the “standard” approach.

Hyperspectral Rrs(λ) data are synthesized to cover a wide range of depths, three

benthic types (coral, seagrass, and sand), and turbidity. These Rrs(λ) data are then

interpolated to represent the measurements for Landsat-8/OLI, SNPP/VIIRS, and

Sentinel-3A/OLCI.

Landsat-8\OLI SNPP\VIIRS Sentinel-3A\OLCI

coral seagrass sand coral seagrass sand coral seagrass sand

MAPE 42% 43% 21% 22% 31% 13% 22% 26% 10%

Standard Bias 14% 13% 7% 6% 18% 2% 5% 14% 3%

RMSE 9.3 9.5 6.0 8.8 9.1 4.6 8.3 8.5 4.1

MAPE 26% 28% 15% 14% 19% 11% 14% 16% 10%

This study Bias 1% 1% 3% 4% 9% 0% 1% 5% 2%

RMSE 8.3 8.7 5.2 7.7 8.2 4.0 7.2 7.8 3.9

MAPE: median absolute percentage error; RMSE: root mean square error.

Error statistics for SNPP/VIIRS bathymetry and Sentinel-3A/OLCI bathymetry: 

MAPE = 9%, Bias = 8%, and RMSE = 0.57 m.

Error statistics for Sentinel-3A/OLCI bathymetry and NOAA CRM model:

MAPE = 16%, Bias = −2.7%, and RMSE = 2 m.

Error statistics for Landsat-8\OLI bathymetry and LiDAR data:

MAPE = 40%, Bias = −17%, and RMSE =  8.4 m.

1st image 2nd image

Cost 
function

Cost 
function

Parameters Range (interval) Levels

P 0.01–0.19 (0.03) 7

G 0.01–0.19 (0.03) 7

X 0.001–0.019 (0.004) 7

H 0.5–29.5 (1.0) 30

η −0.5–2.5 (0.5) 7

Sdg 0.015 1

θa 30° 1

B: coral 0.005, 0.05, 0.1 3

B: seagrass 0.01, 0.035, 0.08 3

B: sand 0.1, 0.25, 0.6 3

Lower 
boundary

Upper 
boundary

Initial value

P1 0.005 0.35 0.072·[Rrs,1(443)/Rrs,1(550]-1.62   

G1 0.001 0.6 0.072·[Rrs,1(443)/Rrs,1(550]-1.62

X1 0.0001 0.08 30·aw(670) ·Rrs,1(670)  

P2 0.005 0.35 0.072·[Rrs,2(443)/Rrs,2(550]-1.62   

G2 0.001 0.6 0.072·[Rrs,2(443)/Rrs,2(550]-1.62

X2 0.0001 0.08 30·aw(670) ·Rrs,2(670)  

B 0.001 0.8 0.5

H 0.1 30.5 10

 The bottom albedo spectra for coral,

seagrass, and sand were derived from

Hochberg et al. (2003).

 2-SOA uses a fixed bottom albedo spectrum

(bright band) (Lee et al., 1999).

 2-SOA used fixed lower and upper

constraints and dynamic initial values.

Bottom albedo spectra

P: phytoplankton light absorption;   G: CDOM light absorption;  X: particle backscattering;  B: bottom albedo;  H: depth

SNPP/VIIRS Sentinel-3A/OLCI

Sentinel-3A/OLCI NOAA Coastal Relief Model

The Bahamas

Great Bahamas Bank
Maui

Olowalu coral reefs

Florida Keys

Florida

Five unknowns of P, G, X, B, and H can be determined by quantifying the difference

between the observed spectrum, 𝑅𝑟𝑠
𝑜𝑏𝑠 λ , and modeled spectrum, 𝑅𝑟𝑠

𝑚𝑜𝑑(λ),

Landsat-8/OLI LiDAR
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