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Abstract
The number of machine-learning (ML) applications has surged within the 

meteorological community over the last several years. This surge includes the 

development and application of numerous ML techniques to improve forecasting as 

well as physical models while reducing computational cost. Given the vast trove of 

available satellite-based weather imagery and the gridded structure of many 

meteorological datasets, deep-learning (DL) methods for providing predictions and 

diagnostics for numerous subdomains are experiencing increased adoption. 

However, full adoption will require forecasters and decision makers to interpret why 

model output is produced given the input, especially if the output has implications 

for human well-being. Interpreting DL models can be especially difficult due to their 

complex architectures, and such models are often treated as black boxes. This work 

examines contemporary methods for assessing the interpretability of a convolutional 

neural network (CNN) trained to predict tropical cyclone (TC) intensity based on 

available satellite imagery, primarily in the IR band. CNNs excel at distilling images 

into the most important feature abstractions for developing functional associations 

between input and model output. The goal of this work is to assess whether such a 

DL architecture is capable of learning physically relevant abstractions for the 

problem at hand. We will describe and apply interpretability methods to the TC 

intensity CNN model to assess the importance of physical concepts to final 

predictions. We will also assess the traceability of predictions across the learned 

network. Additionally, methods for assessing model vulnerability to adversarial 

inputs are explored.

Introduction

• Difficulty explaining origins of artificial-intelligence 

(AI) prediction a key barrier to adoption 

• Machine-learning (ML) models (basis for AI) often 

perceived as black boxes

• Notion prevalent in deep-learning 

• O(10M-100M+) trainable parameters

• Filters within layers trained to distill relevant 

features that map to some output

• Operational users require explainable decision 

processes / knowledge of model vulnerabilities

• Predictions informing life and death decisions 

must be traceable

• Predictions of physical processes should 

depend on physically relevant features

• Vulnerabilities may be exploited to alter 

predictions

• Explainable AI techniques capable of conveying DL 

model behavior / vulnerabilities

• Demonstrate physical features/concepts the 

model relates to its predictions

• Provide understanding of model vulnerability to 

adversarial inputs

Explainable AI Methodologies Cont. Robustness to Adversarial Inputs Cont.

Explainable AI Methodologies

Demonstration Convolutional Neural Net (CNN)
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• Model intended to highlight application of methodologies

• Trained to categorize tropical cyclones (TC; TD – Cat. 5)

• Null class of randomly pulled regions included

• TC Data: 2017-18 Atlantic / Eastern Pacific TCs

• CNN Inputs: GOES-E 11.2 um band

• Image chips centered on TC center of circulation

• ~14000 images from 71 TCs

TD TS HU1 HU2 HU3 HU4 HU5 

Maria TD-HU5 image chip examples

Gradient Weighted Class Activation Mapping (Grad-CAM)
• Visual explanation for CNN decisions 

• Identifies input image pixels most important to class prediction

• Method (Selvaraju et al. 2017)
• Run image through CNN & gather layer activations

• Compute gradient of predicted score for class of interest w.r.t. 

activations

• Average the gradients – one avg. gradient for each filter in the 

layer

• Weight activations by respective gradient

• Results aggregated as layer mean or viewed by filter

• Results local to input image
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Grad-CAM results: Input - Michael as Cat. 4

Testing with Concept Activation Vectors (TCAV)
• Determine significance of user-defined concept for 

predictions of a given class (Kim et al. 2018)

Gather known Cat. 4 Images

Determine Concept Activation Vector (CAV)

1. Gather concept images / negative images

2. Gather layer activations for the above

3. Train linear classifier on activations

4. Repeat while varying negative images

Separating 

hyperplane
CAV (points towards 

“Eye” activations)

• CAV tending to point in opposite direction of GVs tends to point in 

direction of increasing probability of correct class identification 

Calculate gradient of model loss for HU4 class w.r.t. 

activations from final layer

Gradient vectors point in direction of decreasing 

probability of correct class identification

Gradient vectors (GV)

Concept images Negative images

Negative images from ALOI 

(Geusebroek et al. 2005)

Importance of Eye Structure to Cat. 4 Prediction

• Concept important if CAVs point opposite of >50% of GVs

• 87% of Cat. 4 GVs in opposite direction of “Eye” CAV

• Eye concept significantly important to prediction of Cat. 4 TCs

• 29% of TD GVs in opposite direction of “Eye” CAV

Robustness to Adversarial Inputs

Adversarial Examples for Four Attack Types
Original DeepFool FGSM NewtonFool BIM

Cat. 4 Cat. 3 Cat. 3 Cat. 3 NULL

Adversarial 

Noise

Attack Top-1 Accuracy (%)

Original (clean) 100

DeepFool (Moosavi-Dezfooli et al. 2016) 40.7

FGSM (Goodfellow et al 2015) 0.81

NewtonFool (Jang et al. 2017) 0.00

BIM (Kurakin et al. 2016) 38.2

Attack success rates on ~120 correctly predicted Michael images

Summary
• Contemporary methods capable of highlighting CNN decision 

process / concepts important to prediction

• ML models vulnerable to adversarial input

• Mitigation of attack risk possible via hardening & filtering

• Future efforts

• Extension of explainable approaches to regression

• Visualization of decision-boundary improvements

• General methodology to increase attack-agnostic 

robustness

Attack mitigation strategies
• Model hardening: train on adversarial imagery; shown to offer 

regularization

• Filter noise through data preprocessing at test/deployment

• Adversarial attacks may cause erroneous model inference

• Occurs at testing or deployment stage

• Targeted     – misguide to specific class

• Untargeted – misguide to arbitrary class

• Adversarial noise added to images causes misclassification

• Noise often imperceptible to humans

• Noise exposes and exploits flaws in model decision function

• Model-to-model transferability possible (Papernot et al. 2016) 

• Security risk when attacker has no access to victim model

• Operational use of CNNs requires knowledge of vulnerabilities

• Ability to detect / screen / remediate adversarial inputs

Approved For Public Release. OTR201900632.

https://arxiv.org/abs/1412.6572v3
https://doi.org/10.1145/3134600.3134635
https://arxiv.org/abs/1611.11279v5
https://arxiv.org/abs/1807.012396
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1807.01069
https://arxiv.org/abs/1605.07277
http://rammb.cira.colostate.edu/products/tc_realtime/season.asp?storm_season=2018
https://arxiv.org/abs/1610.02391v3

