

Developing fine-scale snow cover fraction estimates using Deep Learning

Soni Yatheendradas^{1,2}, Sujay V. Kumar², Daniel Duffy³

¹UMD/ESSIC

²NASA / GSFC: Hydrological Sciences Laboratory

³NASA / GSFC: NASA Center for Climate Simulation

Introduction and overall goals

- Need fine-resolution, gap-free, satellite-based data (e.g., snow cover fraction, or SCF) for evaluating local hydrology
 - MODIS MOD10A1 v5 SCF @ 500 m: gaps in spatial coverage
 - MOD10C1 v5 SCF daily @ 5-km: near-complete spatial coverage
- Downscale / super-resolution regression from MOD10C1 to obtain
 MOD10A1 SCF- like product without gaps
- Demonstration of this Deep Learning prototype for a target 1-km resolution

Background

- Computer vision: simple super-Resolution Convolutional Neural Network (SRCNN): for fast, state-of-the-art image restoration
- Emerging geoscientific super-resolutioning applications
 - Use serially stacked SRCNNs etc.;
 - Augmented with auxiliary data channels (e.g., terrain elevation)
 - Cannot adequately handle input data gaps (e.g., at coastal pixels)
- Computer vision innovations in image inpainting: partial convolution
 - Handles gaps consistent across input channels (e.g., RGB in image)

Spatial domain and data

- 3° X 3° over Central California & Nevada
- 3-year training period (2009-2011)
- Similar development (dev) / validation and test set distributions
 - Alternate days of an year (2012) form these 2 sets

- MOD10C1 SCF input has 3 channels to be considered together: SCF, cloud cover fraction (CCF) and Confidence Index
- Different auxiliary channel types:
 - 1. Static terrain-related: elevation, slope, aspect
 - Dynamic satellite-based: MOD10A1 snow albedo, MOD11A1 land surface temperature (LST)
 - Dynamic LSM-based (land surface model): precipitation, snow water equivalent (SWE), surface radiative temperature, leaf area index (LAI)

Our infrastructure

- Developing infrastructure called MENSA (Machine learning Environment for NASA Scientific data Applications) coded in Python
 - Modified to handle and fill gaps that vary across the input / auxiliary channels
- Successfully implemented on NCCS ADAPT GPUs
- Following accomplishments till date:
 - Keras API layer for modified partial convolution
 - Loss functions in Tensorflow / Keras that consider only valid spatiotemporal data values in target image, e.g., RMSE
- Ongoing work:
 - Additional modified Keras API layers, e.g., batch normalization, activation, addition, pooling.
 - Other loss functions, e.g., that consider visual semantics

Data flow schematic through SRCNN

- Augmentation of traditional Dong et al* [2014] SRCNN
- 'Same' padding throughout during convolution

Input stack: MOD10C1 + Auxiliary

Activation stack 1: 64 channels

Activation stack 2: 32 channels

Output MOD10A1 SCF-like grid

Sample winter day's prediction vs. target

Batch RMSE [%]

Training: 5.7

Dev : 5.1

• Test : 5.3

Sample summer day's prediction vs. target

Batch RMSE [%]

Training: 5.7

• Dev : 5.1

• Test : 5.3

Sample day's gap-filling w.r.t input and target

Sample winter / summer days' prediction after further masked training

Sample winter day after further masked training: spatial components

Sample summer day after further masked training: spatial components

Discussion and ongoing work

- The simple SRCNN shows good skill in estimating SCF with RMSE estimates around or below 10%
- Preparation of Keras layers that enable using other types of convolutional network architectures
 - Parallel SRCNN stacking (ResNet-style)
 - Encoder-decoder type: e.g., U-Net
- MENSA data processing environment will include for hydrology:
 - Applications (e.g., super-resolution, regression, classification, segmentation)
 - Data analytics