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Trends in Global Earth Observation Systems

* GOS Trends:

* New Players in GOS (international,
commercial, etc)

* New Sensors (higher resolutions, etc)
* New technologies (small sats, etc)

* Emergence of New GOS (loT, etc) e
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* Higher users expectations

 Demand for Increase in quantity of
data assimilated (5% currently
assimilated)
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Example of Autonomous Vehicles Using Al
(Similarities to Satellite Data Use in Earth Observation and Nowcasting/NWP)
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Reference: Sensors Magazine published ST article "Three Sensor Types Drive Autonomous

Vehicles" by Gert Rudolph and Uwe Voelzke:
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Evolution of Environmental Data Exploitation

This evolution applies to all
areas of computing.

It has led several major
companies to adapt their
business models to take
advantage of Al

Credit: Materials adapted for Environmental
Observations specifically, inspired from an IBM
presentation by Dr John Kelly, senior vice
president, cognitive solutions, to the NOAA
Science Advisory Board (SAB) on November 2016
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Transformational efficiency in
Applying Human Intelligence

Cognitive Computing —Al Era

(2011- Foreseeable Future)
Enhancement/Augmentation of Human
Intelligence
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Exploring Al for Remote Sensing, NWP &
Nowcasting/Situational Awareness (SA). Status

Secure Data . . Bias R Intelligent Pre-processing Quality Control Radiative Data
Calibration >

Ingest "| Correction - Thinning & Inversion (QcC) ‘ Transfer Assimilation

v

NowCasting < \
Multiple types of Al models /
are being tested depending Value Chain of
on the type of prObIem ObserVing SVStemS Post-Forecast Short-term

considered: DNN, RNN,
CNN, GPR, Morphing Tool,
LSTM, etc

Data Exploitation Correction Forecasting

Post-Forecast | NWP
Correction ) Forecasting

Software Tools used:
TensorFlow and KERAS

Not Tested. Unknown level of confidence Not tested. Reasonable level of confidence Tested or not: Moderate level of confidence Tested. High level of confidence
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B BN Pilot Project: MIIDAPS-AI:

MetOp-A AMSU/MHS/IASI Ryrvoers
MetOp-B AMSU/MHS/IASI L

: Multi-Instrument Inversion and Data Assimilation Preprocessing System

o 1o Ameo e A, MIIDAPS i o Use of Deep Neural Network (DNN) for Geophysical Retrieval and Quality Control Purposes
. DMSP F16 SSMI/S
& DMSP F17 SSMI/S
- DMSP F18 SSMI/S
TRMM TV Google TensorFlow Tool used for MIIDAPS-AI
‘704‘ ' @

GPM GMI GCOM-WT AMSR2 MIIDAPS-AI outputs (TPW) Usmg SNPP/ATMS Real Data Reference source of TPW: ECMWF Analy5|s

How to assess that Al-based
output (Satellite Analysis) is
valid?

(1) Assessing quality by
comparing against
independent analyses

(2) Assessing Radiometric
Fitting of Analysis

MIIDAPS-AI -

. . . 0 8 16 23 31 39 47 54 62 70 0 8 16 23 31 39 47 54 62 70
(3) Assessing analysis spatial TPW, [mm} TPW, [mm]
(4) Assessing inter-
parameters correlations Processing Time forafull  ~5 seconds ~ 2 hours

day data. A single sensor
(ATMS). Excluding 1/0



Pressure, [hPa]

How do we know if this Al-based satellite-
analysis is scientifically valid?

(1)  Statistical Performance (2) Radiometric Convergence
107 7 (against ECMWF analysis) (Fitting ATMS Observations)
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Can Al Be Used as Forward Operator?

Use of Deep Neural Network (DNN) for Radiative Transfer Modeling Purposes

= RTM- Chan2

Comparison: Fit
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Use of GPR (Gaussian Process Regression) Al Model for Data Fusion/Assimilation (Case of Hydrometeors/Clouds)
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Fused GPR analysis of total cloud water matches analysis where observations are dense and relaxes to the background field where they are sparse.

Some distortion near the center of the hurricane is evident in the GPR fields and is due to the sampling.



Use of GPR (Gaussian Process Regression) Al Model for Data Fusion/Assimilation (Case of AMV)

Background and Measurements
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» Synthetic wind observations (red) are injected onto background (black) fields and GPR used to “fuse” the two.

* Color code corresponds GPR confidence — warmer colors reflect high confidence, while colder colors reflect low
confidence estimates — and are consistent with observation locations.



Correcting TPW Forecasting with Al?

ECMWEF vs Al-corrected 6h fcst valid @ECMWEF analysis time ECMWEF vs 6 hr frcst valid @ECMWEF analysis time.

— TPW One day - all 4 cycles TPW

L ——
- \ /| . concatenated together. %’ \ A . B

Npts: 430511
Corr: 0.994
80 - Bias: -0.063

Sdv : 1.753
icept: 22.250
slope: 1.001

60 —\/

—

Density of Points

TPW, [mm]

40

—

20 A

T|mestep =-1 (past) Timeste

Water
Cloud I [ ““““""‘ AMV
Temper.




Use of “morphing” Al Tool (“dogs” video morphing
software) for Cloud/Precip morphing

Note the potential for
morphing both the shape
and color (i.e. equivalent of
track and intensity)
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* Used total integrated cloud ice from NASA GEOS-5 Nature Run (G5NR)
“ALO1” tropical cyclone at two time-steps (0200z and 0600z).

* Morphing software applied as a black box with some hand tuning of
transformations between the two images.

* Image at right sampled using 20 transformations between images

o0 01 02 03 04 06 07 08 0959 1.0
WP

Credit: Example output and software from:
http://andrew.gibiansky.com/blog/image-processing/image-morphing/




Conclusions

+*Big Data Challenge already here

**Al/ML approach is a natural evolution of how to exploit data

(think evolution of Programming languages: Assembler, Basic, Pascal, F66, C++, F00, Java, Python, ...to TensorFlow, Keras, ....)

**Goal of this study is not to show Al/ML approach can do better, but that it can
provide at least similar quality, much faster, therefore it can process more data.

s»*Significant potential to leverage Al tools and models developed in other fields,
to our field: for remote sensing, radiative transfer, data fusion, morphing, etc.

Al has the potential to be a transformational new approach in our exploitation
of Big Environmental data
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