

NOAA-20 ATMS PERFORMANCE HIGHLIGHTS

ATMS SDR Team

Mark Liu, Ninghai Sun, Tiger Yang, Lin Lin, Ed Kim, Lisa McCormick, Joseph Lyu, Craig Smith, Vince Leslie, Idahosa Osaretin, Wes Berg, Kent Anderson, James Fuentes

NOAA STAR, NASA/GSFC, MIT/LL, CIRA/CSU, Northrop Grumman

Presented by Ed Kim and Mark Liu

August 27, 2018

200

NOAA-20 ATMS Antenna Temperature (TDR) Ch.18 183.311±7.0 GHz QH-POL UTC Date: 2017-11-29

ATMS Sensitivity (NEDT)

Comparison of J1 Pre-Launch, NOAA-20 on-orbit, SNPP on-orbit

V. Leslie & I.Osaretin, MIT LL

N-20 NEDT on-orbit ~ same as pre-launch and better than S-NPP

Comparison of J1 Pre-Launch, NOAA-20 on-orbit, SNPP on-orbit

V. Leslie & I.Osaretin, MIT LL

N-20 Noise Correlation Much Better than S-NPP for all Channels

STAR JPSS Annual Science Team Meeting, 27-30 August 2018

ATMS Noise Power Spectra

- On-orbit noise power spectra match well with Instrument TVAC results
- Same or better for most channels compared to S-NPP
- Channels with < 1/f noise will have less striping

J.Lyu/ NASA GSFC

20

40

80

- Rolls -65deg & +30deg
 - Antenna pattern/sidelobe check
- **Backflip Maneuver** ٠
 - Antenna pattern/sidelobe check
 - Sidelobe contamination characterized
 - Scan Bias (flat field) determined
 - Reflector Emissivity much better than SNPP
 - Minor lunar intrusion; no significant impact

Maneuver results good

- ✓ Space view profile #1 declared optimal
- ✓ Channel NE∆Ts stable and lower than S-NPP
- ✓ Noise power spectra same or better for most channels vs. S-NPP
- ✓ Image striping slightly less than S-NPP
- ✓ Inter-channel noise correlation << S-NPP
- ✓ No significant RFI from Ka transmitters so far
- Passive lunar intrusion coefficients derived (currently off-line fixed); evaluating alternative active mitigation technique
- ✓ No heater activation EMI observed
- ✓ Active geolocation tested for first time; faster determination of pointing accuracy appears achievable

- <u>#1 lesson</u>: be willing to delay launch in order to address known hardware issues that affect science performance. The decision will pay off.
- <u>#2 lesson</u>: perform <u>full</u> pre-launch calibration in TVAC: all 3 cold plate temps x 11 scene temps---this is the baseline for J2
- <u>#3 lesson</u>: perform detailed SRF measurements—already planned
- Measure reflector emissivity & adjust SDR algorithm

ATMS Cal/Val Team Members

PI	Organization	Team Members	Roles and Responsibilities
Quanhua (Mark) Liu	NOAA/STAR	Ninghai Sun (technical lead), Hu Yang, Xiaolei Zou, Lin Lin	Project management, SDR team coordination and algorithm test in IDPS, ATMS calibration/validation and geolocation science support, ATMS TDR/SDR data quality and monitoring
Edward Kim	NASA	Craig Smith, Joseph Lyu, Lisa McCormick	Liaison NASA flight team and NG Azusa, and independent SDR assessments, manage PLT and data analyze
Vince Leslie	MIT/LL	Idahosa Osaretin, Mark Tolman	ATMS instrument performance and data quality assessments, PLT data evaluation
Wesley Berg	CSU/CIRA		ATMS and GPM WG band cross- calibration
Deirdre Bolen	JPSS/JAM		ADR/PCR support

ATMS Instrument Specifications

Ch.	Center Freq.(MHz)	POL	Bandwidth Max. (MHz)	Frequency Stability (MHz)	Calibration Accuracy (K)	ΝΕΔΤ (K)	3-dB Bandwidth (deg)	Remarks	Characterization at Nadir
1	23800	QV	270	10	1.0	0.7	5.2	AMSU-A2	Window-water vapor 100 mm
2	31400	QV	180	10	1.0	0.8	5.2	AMSU-A2	Window-water vapor 500 mm
3	50300	QH	180	10	0.75	0.9	2.2	AMSU-A1-2	Window-surface emissivity
4	51760	QH	400	5	0.75	0.7	2.2		Window-surface emissivity
5	52800	QH	400	5	0.75	0.7	2.2	AMSU-A1-2	Surface air
6	53596±115	QH	170	5	0.75	0.7	2.2	AMSU-A1-2	4 km ~ 700 mb
7	54400	QH	400	5	0.75	0.7	2.2	AMSU-A1-1	9 km ~ 400 mb
8	54940	QH	400	10	0.75	0.7	2.2	AMSU-A1-1	11 km ~ 250 mb
9	55500	QH	330	10	0.75	0.7	2.2	AMSU-A1-2	13 km ~ 180 mb
10	57290.344(f _o)	QH	330	0.5	0.75	0.75	2.2	AMSU-A1-1	17 km ~ 90 mb
11	f _o ± 217	QH	78	0.5	0.75	1.2	2.2	AMSU-A1-1	19 km ~ 50 mb
12	f _o ±322.2±48	QH	36	1.2	0.75	1.2	2.2	AMSU-A1-1	25 km ~ 25 mb
13	f _o ±322.2±22	QH	16	1.6	0.75	1.5	2.2	AMSU-A1-1	29 km ~ 10 mb
14	f _o ±322.2±10	QH	8	0.5	0.75	2.4	2.2	AMSU-A1-1	32 km ~ 6 mb
15	f _o ±322.2±4.5	QH	3	0.5	0.75	3.6	2.2	AMSU-A1-1	37 km ~ 3 mb
16	88200	QV	2000	200	1.0	0.5	2.2	89000	Window H ₂ O 150 mm
17	165500	QH	3000	200	1.0	0.6	1.1	157000	H ₂ O 18 mm
18	183310±7000	QH	2000	30	1.0	0.8	1.1	AMSU-B	H ₂ O 8 mm
19	183310±4500	QH	2000	30	1.0	0.8	1.1		H ₂ O 4.5 mm
20	183310±3000	QH	1000	30	1.0	0.8	1.1	AMSU-B/MHS	H ₂ O 2.5 mm
21	183310±1800	QH	1000	30	1.0	0.8	1.1		H ₂ O 1.2 mm
22	183310±1000	QH	500	30	1.0	0.9	1.1	AMSU-B/MHS	H ₂ O 0.5 mm

N20 ATMS Channels 9-12 Scan Asymmetry Largely Removed along with Steep Gradient Near Center of Swath

Eric Simon and Steve Swadley @NRL Monterey

Scan biases (cloud screened data before bias correction)

- NOAA-20 updated SDRs have much more symmetric scan biases than NOAA-20 original SDRs
- NOAA-20 updated SDRs have more symmetric and smaller magnitude scan biases than NOAA-20 TDRs
- NOAA-20 updated SDRs have more symmetric and smaller magnitude scan biases than Suomi-NPP SDRs

SDR data improved because

1.Improved antenna pattern measurements for J01, especially in W and G bands

2.Improved antenna pattern correction algorithm based on On-orbit environment test data

3.More accurate antenna reflector emission correction model

Peter Weston and Niels Bormann

Selected ATMS Comments from ECMWF

- Data quality looks better than Suomi-NPP:
 - Similar biases
 - Smaller standard deviation of first guess departures and diagnosed observation errors
 - Weaker striping signal than Suomi-NPP ATMS
- Improved first guess fits to:
 - Temperature observations (AMSU-A, CrIS, GPSRO)
 - Humidity observations (MHS, GEO CSRs)
- Indicates improved accuracy of short range temperature and humidity forecasts
- Neutral to slightly positive forecast scores

Generally positive feedback from ECMWF

Total Precipitable Water (2017-11-30), beta maturity at day-1

- NOAA-20 ATMS working well since activation
- NOAA-20 ATMS post-launch performance is comparable to pre-launch performance; No Ka-band transmitter RFI and heater induced EMI observed so far
- All PLTs successfully executed, no go-backs, reports nearly complete
 - space view profile #1 declared optimal
 - Maneuver-related activities successful
- NOAA-20 ATMS TDR/SDR compare well to S-NPP ATMS
 - NEΔTs stable since activation and slightly lower than S-NPP
 - Inter-channel noise correlation much lower than S-NPP
- ATMS SDR is significantly improved. MiRS products achieved beta maturity at day-1. TDR/SDR products are operational at major NWP centers. Some centers are working on the ATMS RDR data for climate studies.

NOAA-20 ATMS on-orbit performance compares well with S-NPP ATMS. NOAA-20 ATMS TDR and SDR products look better. The decision to re-work & delay launch (twice) has paid off.

S-NPP Launch 28-Oct-2011 N-20 Launch 18-Nov-2017

Sensor- Spacecraft	Algorithm	Activation	Beta	Provisional	Validated
ATMS-SNPP	SDR-L1b	08-Nov-2011	Jan-2012 <mark>(2 m)</mark>	Oct-2012 (1 yr)	Dec-2013 (2 yr 2 m)
ATMS-N20	SDR-L1b	29-Nov-2017	11-Dec-2017 <mark>(2 wk)</mark>	23-Jan-2018 <mark>(2 m)</mark>	June-2018 <mark>(8 m)</mark>
CrIS-SNPP	SDR-L1b	14-Dec-2011	Apr-2012 (5 m)	Oct-2012 (11 m)	Dec-2013 (2 yr)
CrIS-N20	SDR-L1b	3-Jan-2018	17-Jan-18 (2 m)	16-Feb-18 (3 m)	Aug-2018 (10 m)

Maturity milestones reached earlier for N20!

S-NPP Launch 28-Oct-2011 N-20 Launch 18-Nov-2017

Sensor- Spacecraft	Algorithm	Activation	Beta	Provisional	Validated
MIRS SNPP (ATMS only)	Temperature/ Water Vapor	08-Nov-2011	Apr-2012 (6 m)	Aug-2014 (2 yr 10 m)	Oct-2016 (5 yr)
MIRS N20 (ATMS only)	Temperature/ Water Vapor	29-Nov-2017	21-Mar-2018 (5 m)	Sep-2018 (1 yr)	Sep-2019 (2 yr)
NUCAPS SNPP (ATMS + CrIS)	Temperature/ Water Vapor	14-Dec-2011	Aug-2012 (9 m)	Jan-2013 (1 yr 1 m)	Sep-2014 (2 yr 10 m)
NUCAPS N20 (ATMS + CrIS)	Temperature/ Water Vapor	3-Jan-2018	Jun-2018 (6 m)	Sep-2018 (9 m)	Sep-2019 (1 yr 9 m)

Maturity milestones reached earlier for N20!

JPSS Anomaly Reporting

https://www.star.nesdis.noaa.gov/icvs/SNPP_Anomalies.php

Monitoring and ch	aracterizing s	atellite instrument (performance for we	eather, climate and e	environmental app	lications	
Home > S-NPP On-orbit Eve	nts & Anomalies	Table					
P On-orbit Events	& Anomalie	es Table			Cum	ulative Zip fil	e of all MX Releases, (ZIP, 1.57 MB, 6/3
lumn headings to sort; Type in	the "Search" box f	to query table contents.					Updated: 8/3
All events ATMS	Cris V	IIRS OMPS					
how 30 🛩 entries							Search:
Event 🗘	Date ᅌ	Time (UTC) 🗘	End (UTC) 🗘	Instrument(s) 🗘	Retrieved From	CCR ≎	Notes
Drag Make-Up Maneuver DMU) (28)	7/17/18	16:10	16:23	ACOV	OSPO Planning Calendar	_	Slew: 16:10:00-16:23:04z, 0.7s Burn: 16:16:00:00-16:16:00:70z, OMPS Decon: 16:00-16:27:06z
Block 2.1_Mx2 Transition to Operations	7/2/18	14:50		ACOV	C/V Leads Archive	19 <u></u> 19	1
Roll Maneuver for VIIRS unar Calibration	5/25/18	4:59	5:07	ACOV	OSPO Planning Calendar		04:59:34-05:06:33z, Center of Dwel 05:03:04, -2.13 degrees
Block 2.1_Mx1 Transition to Operations	4/30/18	14:35		ACOV	C/V Leads Archive	1000	
Roll Maneuver for VIIRS unar Calibration	4/25/18	19:25	19:37	ACOV	OSPO Planning Calendar	-	19:25:34-19:37:34z, Center of Dwel 19:30:34z, -3.06 degrees
Block 2.1_Mx0 Transition to Operations	3/5/18	17:00	÷	ACOV	C/V Leads Archive		
Drag Make-up Maneuver DMU) (27)	2/28/18	17:49	18:02	ACOV	C/V Leads Archive		No Slew, 17:48:59-18:02:03, Burn: 17:54:59-17:55:01, OMPS Decon 17:38:59-18:06:03
Roll Maneuver for VIIRS unar Calibration	2/26/18	5:34	5:40	ACOV	C/V Leads Archive		-1.13 degrees
Roll Maneuver for VIIRS unar Calibration	1/27/18	20:08	20:20	ACOV	C/V Leads Archive	-	Center of Dwell at 20:13:15, -4.223 degrees
CC Clock Slope	1/24/18	-:	-;	ACOV	NPP ATR		

Easy to find anomalies from STAR ICVS

- Keep analyzing PLT data, such as pitch maneuver, active geolocation, lunar intrusion, and so on, to better characterize NOAA-20 ATMS on orbit performance
- Implement key instrument performance and data quality monitoring packages for long term stability trending
- Improve calibration algorithm, remove reflector emission in TDR, hybrid antenna pattern correction, better TDR to SDR conversion (code change, PCT change)
- ✓ Improve geolocation accuracy—switch to active geolocation?
- Update the SNPP ATMS calibration algorithm and PCT for consistency and better cross verification
- ✓ Support data product end users, antenna pattern model for radiance assimilation
- ✓ Write users manual
- ✓ NOAA-20 and SNPP ATMS reprocessing
- \checkmark J2 ATMS assessment and preparation to operation