

JPSS SST 2018 UPDATE

NOAA STAR

Alexander Ignatov, John Sapper, Yury Kihai, Irina Gladkova, Matthew Pennybacker, Olafur Jonasson, Boris Petrenko, Xinjia Zhou

STAR, OSPO, GST, CICS-CREST, CSU-CIRA

- Cal/Val Team
- Sensor/Algorithm Overview
- SNPP/N20 Products Performance
- Major Risks/Issues and Mitigation
- Milestones and Deliverables
- Future Plans/Improvements
- Summary: Users, FY18 Accomplishments, FY19 Work

Cal/Val Team Members

Name	Organizatio n	Tasks
Ignatov, Sasha	STAR	JPSS Algorithm & Cal/Val Lead
DiGiacomo, Paul	STAR	JPSS Ocean Lead/CoastWatch
Lance, Veronica	STAR – GST	Coast Watch / JPSS Ocean Coordinator
Sapper, John	OSPO	NDE/OSPO Operations, Data distribution & Archival
Kihai, Yury	STAR – GST	ACSPO SW/HW; Preprocessor; L2P Code; In situ match-ups ACSPO Regional Monitor for SST (ARMS) – back end; L3U product
Pennybacker, Matthew	STAR – GST	L3U/C/S Code/Algorithms (U=Uncollated; C=Collated; S=Super-Collated); Resampling; Pattern Recognition; Ocean Fronts; ARMS
Jonasson, Olafur	STAR – GST	VIIRS SST Reanalysis (RAN); RDR-to-SDR; SST Quality Monitor (SQUAM); Monitoring IR Clear-sky Radiances for SST (MICROS)
Petrenko, Boris	STAR – GST	ACSPO Algorithms: Clear-Sky Mask/SST/Error Characterization
Zhou, Xinjia	STAR – CIRA	SST Quality Monitor (SQUAM); Monitoring IR Clear-sky Radiances Oceans for SST (MICROS); In Situ Quality Monitor (<i>i</i> Quam)
Gladkova, Irina	STAR–CCNY CREST/GST	L3U/C/S Code/Algorithms (U=Uncollated; C=Collated; S=Super-Collated); Resampling; Pattern Recognition; Ocean Fronts; ARMS

SST Algorithm

- NOAA enterprise Advanced Clear-Sky Processor for Ocean (ACSPO) system
- ACSPO is a stand-alone system (does not the Enterprise Cloud Mask, etc)

Night M12/14/15/16 (3.7/8.6/10.8/12 μm)

 $T_{s} = a_{0} + a_{1}T_{11} + a_{2}(T_{11} - T_{3.7}) + a_{3}(T_{11} - T_{8.6}) + a_{4}(T_{11} - T_{12}) + [a_{5} + a_{6}T_{11} + a_{7}(T_{11} - T_{3.7}) + a_{8}(T_{11} - T_{8.6}) + a_{9}(T_{11} - T_{12})]S_{\theta} + [a_{10}(T_{11} - T_{3.7}) + a_{11}(T_{11} - T_{8.6}) + a_{12}(T_{11} - T_{12})]T_{s}^{0}$

Day M14/15/16 (8.6/10.8/12 μm) + M5/7 (0.68/0.86 μm)

 $T_{S} = a_{0} + a_{1}T_{11} + a_{3}(T_{11} - T_{8.6}) + a_{4}(T_{11} - T_{12}) + [a_{5} + a_{6}T_{11} + a_{8}(T_{11} - T_{8.6}) + a_{9}(T_{11} - T_{12})]S_{\theta} + [a_{11}(T_{11} - T_{8.6}) + a_{12}(T_{11} - T_{12})]T_{S}^{0}$

 $T_{3.7}, T_{8.6}, T_{11}, T_{12}$ BTs at 3.7, 8.6, 11 and 12 µm $S_{\theta}=1/cos(\theta) - 1$ θ is VZA T_s^0 L4 SST in °C (currently by Canadian Meteorological Center - CMC)a'sregression coefficients, trained against drifters and mooring buoys

- Regression coefficients are trained against *in situ* SST & stabilized by taking special steps to keep only significant eigenvectors/values of the covariance matrix
- Error characterization (Single Scanner Error Statistics, SSES) significantly reduces errors in retrieved SSTs (due to aerosols, residual cloud, etc) & improves consistency with *in situ*

Performance of SNPP/N20 Real-Time SST

Regression SST

Product	L1RDS APU	SNPP	N20
	Thresholds	Performance	Performance
L2P/L3U	Accuracy: ±0.20 K	Accuracy: ±0.15 K	Accuracy: ±0.15 K
(Night)	Precision: 0.6 K	Precision: 0.35 K	Precision: 0.35 K
L2P/L3U	Accuracy: ±0.20 K	Accuracy: ±0.20 K	Accuracy: ±0.20 K
(Day)	Precision: 0.60 K	Precision: 0.45 K	Precision: 0.45 K

• SSES Bias Corrected SST

Product	L1RDS APU	SNPP	N20
	Thresholds	Performance	Performance
L2P/L3U	Accuracy: ±0.20 K	Accuracy: ±0.10 K	Accuracy: ±0.10 K
(Night)	Precision: 0.6 K	Precision: 0.30 K	Precision: 0.30 K
L2P/L3U	Accuracy: ±0.20 K	Accuracy: ±0.15 K	Accuracy: ±0.15 K
(Day)	Precision: 0.60 K	Precision: 0.35 K	Precision: 0.35 K

• Performance is expected to improve in the reprocessed (RAN) products

Major Risks/Issues and Mitigation

Risk/Issue	Description	Impact	Action/ Mitigation
1 – WUCD anomalies remain unresolved	Quarterly/Annual WUCDs exercises	VIIRS SST off specs for 2-3 days per quarter/year	Quarterly reduced to annual. SDR plans to correct
2 – ACSPO Updates in NDE	NDE implementation takes a little too long	Negative impact on users, producers, archive	Working with PO to address
3 – Parallel Testing	Need both data streams for at least two weeks	Negative impact on users, producers, archive	Working with PO to address
4 – OSPO/NDE Integration	OSPO has no access to NDE to help with builds	Negatively affects implementation time	Working with PO to address

FY19 Milestones & Deliverables

Task Category	Task/Description	Start	Finish	Deliverable
Development (D)	ACSPO 2.61 (update N20, GFS 0.50/ 0.25; optimize); 2.70 (improve clear- mask/SST in support of data fusion)	Jun'18	Aug'19	V2.61: deliver in Dec 2018 V2.70: deliver in Aug 2019 (Versions may be combined)
Integration & Testing (I)	Continue testing/Improving N20 SST. Improve SST/clear mask/ocean fronts. Iterate based on users' feedback.	Jun'18	Jun'19	N20 SST archived PO.DAAC & evaluated by users. Improved ACSPO algorithms integrated
Calibration & Validation (C)	Support N20 and SNPP Cal/Val & fixes. Work on N20 RAN1 & SNPP RAN2. Archive N20 w/PO.DAAC.	Jun'18	May'19	JPSS SST meets specs/users' needs. N20 RAN1 complete. SNPP RAN2 advanced.
Maintenance	Maintain ACSPO, SQUAM, <i>i</i> Quam, ARMS, match-up codes, RAN infrastructure. Improve & optimize	Ongoing	Ongoing	ACSPO, SQUAM, <i>i</i> Quam, ARMS, match-up, RAN codes functional, stable & optimal
LTM & Anomaly Resolution (L)	Work w/VIIRS SDR Team to fix WUCD anomalies. Sustain SQUAM, <i>i</i> Quam, and ARMS monitoring & optimize	Ongoing	Ongoing	Real-Time/RAN performance stats available online in SQUAM, <i>i</i> Quam, ARMS

Algorithm Improvements

- Improved SST, Clear-Sky Mask/QC, and Error Characterization Algorithms in support of users and data fusion
- Pattern Recognition and Front Detection Algorithms
- J2 and Beyond
 - Support J2/N21 Algorithm Updates and Cal/Val
 - Support J3/4 Algorithm Updates and Cal/Val
- Reprocessing Plans/Status
 - SNPP RAN2 underway. Expected completion: Dec 2019
 - N20 RAN1 underway. Expected completion: Dec 2018
- Long Term Monitoring/Website links
 - SQUAM (satellite monitor) <u>www.star.nesdis.noaa.gov/sod/sst/squam/</u>
 - *i*Quam (in situ monitor) <u>www.star.nesdis.noaa.gov/sod/sst/iquam/</u>
 - ARMS (regional monitor) <u>www.star.nesdis.noaa.gov/sod/sst/arms/</u>

- Users' Feedback: Generally Positive
 - NOAA: NESDIS (CW, CRW, GPB), NOS, OAR, NCEP, NMFS
 - Int'l: CMC, EUMETSAT, Met Office, BoM, DMI, JMA, U. Melbourne
 - Academia: OSU, URI, UMD
 - Private Industry: Digital Globe, ESR
- Summary FY18 Accomplishments
 - ACSPO: 2 versions released, 2.50 & 2.60
 - N20 SST: Declared provisional (pending implementing ACSPO 2.60 in NDE)
 - SNPP RAN2: Infrastructure set up in STAR, underway with 2.60
 - Validation systems: SQUAM, *i*Quam, ARMS all upgraded to v2.0/2.1
 - PGRR SST fusion project: Will aggregate individual L3Us into L3C/S

• Major Focus in FY19

- Development: ACSPO v2.61 (GFS/improved N20) & 2.70 (Improved SST/Mask)
- Integration: Archive N20 w/PO.DAAC. Evaluate 2.61/2.70 improvements w/Users
- Cal/Val: Support N20 & SNPP Cal/Val. Perform N20 RAN1. Advance SNPP RAN2
- Maintenance: Sustain ACSPO, SQUAM/iQuam/ARMS, match-up codes, RAN's
- LTM/Anomaly: Sustain SQUAM/iQuam/ARMS. Resolve anomalies (WUCD)