

CrIS on JPSS-2,3,4: Summary of instrument, bus, integration, and test changes

STAR JPSS Annual Meeting 08/09/2016

David Johnson NASA LaRC david.g.johnson@nasa.gov 757-864-8580

Overview

- CrIS on JPSS-2,3,4 are intended to be copies of SNPP/J1 CrIS
- However, some minor changes could not be avoided, including:
 - Vendor changes
 - Part changes due to obsolescence
 - Replacement of aging test equipment
- Performance requirements have not changed
 - A robust test program is in place to verify that changes will not impact performance

Instrument Changes

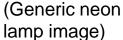
Part changes due to obsolescence include:

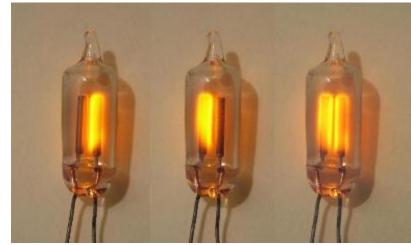
- Neon lamp
- Metrology laser
- More details on next slide

Vendor changes include:

- Beamsplitter coating
 - New vendor means new coating prescription but same performance requirements
- Power supplies
 - Again, new vendor but same performance requirements

Changes to improve manufacturability include:


- Detector chip size increased to improve assembly yield
 - No change to active area diameter
- Chamfer added to lens retainer to avoid contacting singlet
 - Corrective action following discovery of chip on J1 LW singlet



Neon lamp and Metrology laser

- Neon lamp part obsolescence resulted in search for new supplier
 - Testing established that new lamp meets glow stability and lifetime requirements

- Metrology laser part obsolescence resulted in search for new supplier
 - Testing established that new laser meets requirements for wavelength, beam quality, radiation tolerance, and mission assurance.

Instrument Test Changes

- Bench test replaced by pre-environmental tvac test
- External calibration target (ECT) and control rack
 - New ECT for reduced thermal gradients
 - Details on following slide
 - New rack for better heater control, more accurate temperature sensor readout, and improved reliability
 - NIST calibration scheduled for January 2017
- Gas cart being rebuilt
 - Will correct the gas pressure readout error discovered during J1 testing
- Improvements to coregistration test setup
 - More complete FOV mapping in less time
 - Enables early detection of obscurations or defects in detector assembly
- EMI/EMC testing as well as vibration testing has been moved to Rochester facility
 - Test equipment has also been consolidated in Rochester
 - Change in location only, not a test change

ECT and ST for Instrument TVAC

The Space Target (ST) will be unchanged from J1/SNPP

Issues with current ECT:

- Brightness temperature gradients across the ECT aperture exceeding 150 mK were observed during J1 testing;
- Gradient generally increased with heater power/setpoint temperature;
- Difference between supplemental sensor temperature readings and brightness temperature also depended on heater power.

New ECT design:

- Preserves current cavity design and surface treatment;
- Adds additional temperature sensors that are better integrated with primary plate;
- Uses temperature-controlled fluid loop rather than LN2 radiative sink to reduce transition time and minimize heater power (and gradients) at each set point.
 - Gradients are predicted to be <10mK at all temperature setpoints.

Satellite Bus and Integration Changes

- The bus provider for JPSS-2,3,4 has changed from Ball Aerospace to Orbital ATK
 - The spacecraft orientation during tvac testing will change from vertical (like at launch, as at Ball) to horizontal
 - The Earth target provider for spacecraft tvac testing will also change from Ball to Orbital ATK.
 - The space target will continue to be provided by Harris
 - Requirements for the targets are unchanged
- The ATMS scan plane will be rotated slightly in yaw relative to CrIS to provide better alignment of the geolocated footprints
 - Geolocated crosstrack scans are currently misaligned due to the combination of the different crosstrack scan rates and the satellite ground track velocity

Current and Proposed ATMS/CrIS Alignment

Proposed (from C-H Joseph Lyu)

J1/J2 STATUS UPDATE

JPSS-1 Test Update

- As of 7/29, the spacecraft-level TVAC test schedule is:
 - 8/8: Move spacecraft to TVAC chamber (with ATMS EDU unit)
 - 8/13: Start Open Door tests
 - 8/16: Close door and start TVAC
- TVAC expected to last 50 days
- Tests include:
 - Day-in-the-life testing
 - Jitter tests
 - Diagnostic mode data collection
 - Full spectral resolution diagnostic mode test
- Two slides describing data access follow:
 - One slides from Lisa McCormick
 - One from Leland Chemerys

- SMD data will be provided on GRAVITE for each instrument
 - Format
 - ATMS: RDR files, HDF5 wrapped CCSDS packets (.h5)
 - CERES: RDR files, HDF5 wrapped CCSDS packets (.h5)
 - CrIS: RDR files, HDF5 wrapped CCSDS packets (.h5)
 - OMPS: RDR files, HDF5 wrapped CCSDS packets (.h5)
 - VIIRS:
 - All test data: raw CCSDS format (.dat)
 - Full Swath Test data: RDR files, HDF5 wrapped CCSDS packets (.h5)
 - Frequency of data arrival
 - End of every shift (time of day not yet known)
 - BATC plans 3 shifts per 24hrs, 7days a week
- Ancillary Data (targets, event logs, etc.) provided on eRooms
 - My eRooms > Flight Integration and Test > JPSS-1 I&T > Satellite Test Ancillary Data
 - Access is Need-to-Know. BATC NDA is not required.

Processing Flow

- BATC pushes all raw SMD and HRD data to the NASA server
- The SMD files will be processed for the science team using the DRL Satellite Telemetry Processing System (STPS) software
 - DRL is the Direct Readout Lab in GSFC building 28
- Arrival of new data triggers processing of each SMD file with the STPS software
 - STPS can generate either HDF-formatted RDRs or raw CCSDS packet files for each instrument
 - An STPS config file controls the output formats
 - An iteration may be required to generate a config file that satisfies each instrument science team
 - This task is complicated a bit by non-flight APID mappings during the ground testing.

JPSS-2 CrIS Status Update

Subcontractors working on major subassemblies, including:

- Optomechanical assembly (interferometer)
- Telescope
- Detectors
- Electronic Circuit Card Assemblies

Major project milestone dates:

- 7/18/2017: Pre-environmental TVAC
 - Replaced the bench test on NPP/J1
- 4/1/2018: Full TVAC performance testing
- 5/3/2018: Pre-ship review