

JPSS STAR Science Team Annual Meeting OMPS SDR Team

Xiangqian Wu OMSP SDR Lead May. 12, 2014

- OMPS SDR Team
- Products and Users
- Requirements and Performance
- Accomplishments
- Algorithms Evaluation
- Future Plans for J1
- Summary

PI Name	Organization	Primary Roles
Fred Wu	NOAA/STAR	Budget and coordination; Instrument and product performance monitoring; J1 code development; TVAC data analysis; SDR algorithm.
Glen Jaross	NASA	Instrument scientist; TVAC data acquisition and analysis; SDR algorithm.
Bhaswar Sen	NGAS	G-ADA test for IDPS operations; TVAC data analysis; SDR algorithm.
Maria Caponi	Aerospace	Algorithm changes coordination; DR and issues tracking
Daniel Cumpton	Raytheon	IDPS operations

- Products:
 - OMPS nadir mapper (NM) and nadir profiler (NP) earth view (EV) and calibration (CAL) SDR in both nominal and diagnostic mode.
- Users:
 - OMPS EDR Team
 - Wider and future users via CLASS

Requirements and Performance

Parameters	Specification/Prediction	On-Orbit Performance
	Value	
NT 10 %	- 20/ C 11 - 11	0.460/
Non-linearity	< 2% full well	< 0.46%
Non-linearity Accuracy	< 0.2%	±0.2%
On-orbit Wavelength Calibration	< 0.01 nm	0.15-0.25 nm
Stray Light NM Out-of- Band + Out-of-Field Response	For $NM \le 2$	average < 2%
Intra-Orbit Wavelength	Allocation (flow down from	~ 0.02 nm
Stability	EDR error budget) = 0.02 nm	
SNR	1000	> 1000
Inter-Orbital Thermal	Allocation (flow down from	~0.02 nm
Wavelength Shift	EDR error budget) = 0.02 nm	
CCD Read Noise	60 –е RMS	< 25 –е RMS
Detector Gain	43 (for NP)	47 (for NP)
	46 (for NM)	51 (for NM)
Absolute Irradiance	< 7%	< 3%
Calibration Accuracy		in 300-310 nm: up to ~10 % for both NM and NP
Absolute Radiance	< 8%	< 5%
Calibration Accuracy		in 300-310 nm: up to ~6 % for NM and NP
Normalized radiance Calibration Accuracy	< 1%	< 1%

- Beta maturity March 2012
- Provisional maturity March 2013
- Validated maturity
 - Primary review Dec 2013
 - Delta review planned for June 2014
 - Improved stray light correction and wavelength registration, for both NM & NP.
 - CAL SDR transition to GRAVITE is on schedule.

- Algorithm Description:
 - OMPS has three sensors. NOAA is responsible for SDR of two sensors (NM & NP).
 - Each sensor is configured to acquire earth view (EV) or calibration (CAL) data, in either nominal or diagnostic mode.
 - IDPS processes nominal EV data only
 - Transition is underway to process CAL SDR at GRAVITE
 - To automate the use of CAL SDR in EV SDR processing at IDPS
 - To archive the CAL SDR at CLASS

- Validation Approach and Datasets
 - Primary validation by examination of SDR characteristics such as dark, linearity, SNR.
 - Further validation:
 - Characteristics of EV SDR
 - Characteristics of EDR
 - Comparison with other measurements (GOME-2, SBUV/2)
 - Comparison with RTM (CRTM, MLS)
- Performance vs. Requirements
 - See earlier slide

- Risks/Issues/Challenges
 - Develop modifications to accommodate J1 upper
 - Produce CAL SDR in Ground System
- Quality Monitoring:
 - In place, and being continuously improved.
- Recommendations: NPOESS algorithm has evolved into the NOAA-endorsed JPSS algorithm and any needed improvements should continue. Substantial changes are expected for J1.

- JPSS-1 Algorithm Milestones
 - May: Unit test for decompressor and aggregator
 - July: Integration of pre-processor into IDPS
 - Aug: functional test of LUTs
 - Sept: Accommodate sparse LUTs
 - Oct: integration test of LUTs with J1 code
 - Nov: delivery to STAR AIT
 - Dec: delivery to DPA

- Validation Strategies
 - Pre-launch
 - Functional verification of LUT from SCDB
 - Integration tests of new LUTs and the modified code
 - Post-launch
 - Examination of SDR characteristics such as dark, linearity, SNR.
 - Characteristics of EV SDR
 - Characteristics of EDR
 - Comparison with other measurements (GOME-2, SBUV/2)
 - Comparison with RTM (CRTM, MLS)

- OMPS EV SDR is expected to reach the Validated maturity in June
- OMPS CAL SDR transition to GRAVITE is on schedule despite the setbacks
- Tasks and schedule for J1 preparation are well defined. Risk is low for performance but moderate for schedule and cost.