

The STAR Algorithm Integration Team (AIT) Research to Operations Process

Presented by

Tom King

The Problem

- Scientists write code that needs to go to operations, but:
 - » Many scientists often prefer interpreted languages like IDL and Matlab or even older languages like Fortran 77. Fortran 90/95 or C/C++ expertise does not always exist.
 - » Code written in isolation without considering how it would run within a larger system
 - » Code works with only certain compilers
 - » Code uses non-standard functions
 - » Code doesn't account for operational concerns such as run time, memory usage, disk I/O, error checking
 - » Haven't considered what input and ancillary data are actually available in the operational environment and what the latency of those data have
 - » Code is often not well documented
 - » Code is often written by a mixture of programmers with varying styles and abilities
 - » Paths are hardcoded and algorithms assume the data they need will be in arranged in a particular data tree
 - » Executable code makes system calls (assuming a certain OS)
- Operations is tasked only to receive, run, and monitor the code

The Problem

 R2O isn't as simple as cleaning up science code and delivering to operations. This work also involves coordinating with many stakeholders.

STAR R2O Solution

- The solution is to have the STAR Algorithm Integration Team (AIT) act as a "middle man" to:
 - » Assist the science teams in providing Quality Assurance (QA) for the entire R2O process and do so in a way that isn't a burden for them
 - » Work with stakeholders to refine requirements and enhance user readiness
- Product QA is concerned with assuring that the work products (software & documentation) created during the project's lifecycle meet their requirements.
- Process QA is concerned with assuring that the process standards (reviews & stakeholder interaction) are met throughout the project lifecycle.

The STAR AIT Team

- The STAR AIT team is lead by Walter Wolf and consists of 30+ contractors
- The STAR AIT R2O process has been successfully applied to a number of past and current projects:
 - » IASI
 - » NUCAPS
 - » GCOM
 - » BUFR/GRIB2 Toolkit
 - » Blended Cloud Products
 - » JPSS Risk Reduction
 - » GOES-R AIT
 - » JPSS AIT
 - » OSPO Product Monitoring
 - » VIIRS Polar Winds
 - » GOES Winds
 - » Advanced Composition Explorer

R2O Process Methodology

- The STAR AIT R2O process evolved from a CMMI level 3 process that was tailored and blended with the existing SPSRB process.
- The process consists of working with science teams and the stakeholders to do the following:
 - Conduct a standard set of project reviews
 - » Generate a standard set of documentation
 - » Stakeholder interaction
 - Requirements development/refinement
 - » Risk tracking and mitigation
 - » Code cleanup for:
 - Coding/Security
 - Configuration Management
 - Software Testing & Product Validation
 - Common data formats and metadata (CF & ISO)
 - Standard languages, tools, and libraries
 - » Delivered Algorithm Package (DAP) delivery

Reviews

- The review process is described on the SPSRB website at (http://projects.osd.noaa.gov/SPSRB/design_review_guidance.h tm)
 - » Preliminary Design Review (PDR)
 - Present preliminary requirements
 - Identify the problem, provide background, and discuss competing solutions
 - Identify an initial design
 - Presents risks
 - » Critical Design Review (CDR)
 - Finalize requirements
 - Verify that the chosen design is able to meet those requirements
 - Present algorithm theoretical basis
 - Software architecture & Concept of operations
 - Product QA (Validation plans)
 - Presents risks

Reviews

- » Unit Test Readiness Review (UTTR)
 - Present test plan, procedures, and results
 - Test must demonstrate that software is meeting its functional requirements
 - Presents risks
- » Software Review (SR)
 - Check that code meets all SPSRB coding and ESPC security standards
- » Algorithm Readiness Review (ARR)
 - Demonstrate that all data products are meeting requirements
 - Identify Delivered Algorithm Package (DAP) components and demonstrate that they meet requirements
 - Presents risks

Documentation

- STAR project documentation:
 - » Requirements Allocation Document (RAD)
 - Identify basic and derived requirements
 - Tie these requirements to user requests
 - Allocate requirements to components of the system design.
 - » Review Item Disposition (RID) Risk Tracking
 - Track, rate, mitigate, and assign individuals to address risks for the lifecycle of the project
 - » Presentation slide packages
 - Preliminary Design Review
 - Critical Design Review
 - Unit Test Readiness Review
 - Algorithm Readiness Review

Documentation

- SPSRB required documentation (Templates are available here http://projects.osd.noaa.gov/SPSRB/standards_data_mtg.htm)
 - » System Maintenance Manual (SMM)
 - Describes the system design, interfaces, files (input, intermediate, and output)
 - Identifies the hardware, system requirements
 - Identifies the installation and operational procedures (shutdown/restart) required to run the system
 - Describes monitoring (error message, quality monitoring), maintenance, and troubleshooting
 - » External Users Manual (EUM)
 - Describes the detailed format of the output data files for end users
 - » Algorithm Theoretical Basis Document (ATBD)
 - Provides the theoretical background and description of the algorithm
 - Performance estimates, practical considerations
 - Validation procedures
 - Assumptions and limitations

Code Updating

- Getting code to meet SPSRB coding standards
 - » Removing hardcoded paths
 - » Adding comments and standard headers
 - » Using meaningful variable names
 - » Standard indentation of blocks
 - » Avoiding non-standard functions
- Porting code to target operating systems, compilers, and platforms
- Adding error checking and logging
- Profiling and debugging
- Rewriting code into ESPC approved languages
- Testing to verify offline research and operational codes produces the same results
- Providing updates or tools for handling operational interfaces
- Integration into a test system (e.g. ADL or the GOES-R Framework)

Development Standards

- Coding of software:
 - » SPSRB Coding standards available on the SPSRB website (http://projects.osd.noaa.gov/SPSRB/standards_software_coding.htm)
 - » OSPO Technical Reference Model (TRM) is the source of IT standards and specifications
 - » Software review conducted with OSPO PAL and ESPC IT security
- Using the STAR CM Tool (IBM Rational ClearCase, Version 7.0) to track and baseline development
- Implementing use of standard data formats such as netCDF, HDF, BUFR, and GRIB
 - » netCDF and HDF are preferred formats for many users and the archives
 - » BUFR and GRIB are standard NWP formats
 - » Metadata follows Climate and Forecast (CF) and ISO 19115 standards

Development Standards

Use of standard tools

- » Common use of home-grown functions for time calculations, error checking, wrappers to netCDF and HDF API functions
- » Code generators for I/O handling (read, write, allocate, and deallocation) for Fortran 90 and C/C++
- » Use of Valgrind for profiling (resource usage and memory leaks)
- » Common set of home-grown coding checking/cleaning

Implementation of standard test procedures

- » Code unit and system testing
- » Presentation of the results to stakeholders at the UTRR and ARR
- » Development of test plans
 - Identify test environment
 - Identify test data sets (input, intermediate, output)
 - Identify test code
 - Show test steps
 - Show test results and compare to requirements

Stakeholder Interaction

- Requirements development/refinement

 » Working with end users to identify and agree upon on data formats and content

 » Defining archive and metadata requirements

 » Identifying or defining interfaces between algorithms and system into which they run

 » Identifying documentation needs

 » Identifying production rules for downstream integrators

 » Identifying file name conventions
- Coordinating additional paperwork and documentation

 » Data Access Request (DAR) forms

 » Coordination with DMWG

 - CLASS Submission Agreements (SA)
- Providing sample data products and software to end users prior to operational implementation for
 - Product validation
 - End-user readiness
- Reprocessing data for science teams to assist Cal/Val activities
- Attending Integration Product Team (IPT) meetings

 » Keep track of upstream changes to algorithms and input formats

 » Coordinate development with updates to the system in which the science algorithms will run
 - Coordinate common standards for output and algorithm interfaces

Risk Tracking

- Identify risks and impacts
- Developing and managing schedules
- Assigning risks a rating as a function of likelihood and impact
- Developing mitigation plans
- Assigning actions to individuals for mitigation efforts
- Opening and closing risks as needed
- Risks and actions are presented and discussed at each review step

Delivered Algorithm Package (DAP)

DAP contents

- » Test plans and test data
- » SPSRB documentation (ATBD, SMM, EUM)
- » Source Code
- » All scripts, static data files, and configuration files
- » Production rules
- » Description of interfaces
- » Delivery memo and README

R2O Example: NUCAPS

- NOAA Unique CrIS/ATMS Product System (NUCAPS)
 - » Project Lead: Walter Wolf
 - » STAR algorithm science lead: Mark Liu (previously was Chris Barnet)
 - » OSPO PAL: Awdhesh Sharma
- It is an SPSRB-funded project whose goal is to produce a software package that runs in NDE to provide
 - » Produce CrIS thinned radiances in BUFR for NWP
 - » Produce retrieved profiles of temperature, water and trace gasses
 - » Produce validation products for STAR Cal/Val and OSPO monitoring
 - » VIIRS cloud products collocated to CrIS
 - » CrIS OLR
- NUCAPS was designed to be delivered in several phases so the process was tailored to the project schedule, scale and funding
- Leveraged the algorithms of AIRS and IASI
- Users consist of NWP, archive users, science teams

R2O Example: NUCAPS Stakeholder Interaction

- Stake holder interaction and requirement derivation efforts
 - » Acquire documents defining the project requirements (JPSS L1RD Supplement, SPSRB Project Plan, OSPO TRM, SPSRB coding standards and document templates, NDE DAP delivery standards). From this develop the RAD.
 - » Define and negotiate interfaces to the NDE system
 - » Identify required data formats, naming conventions, DAP delivery standards, documentation, system requirements (target platform, OS, compilers)
 - » Articulate algorithm needs to NDE (input and ancillary data, production rules, resource requirements)
 - » Worked with JCSDA, EMC, EUMETSAT, and WMO to define contents of and approval for the CrIS BUFR table descriptors
 - » Worked with NGDC and NCDC/CLASS to define metadata and archive requirements and methods
 - » Worked with OSPO PAL, NUCAPS science lead, and the Product Quality Monitoring team lead to define a monitoring methodology
 - » Worked with the STAR NDE, OSPO, and DMWG to acquire output data to support Cal/Val efforts at STAR

R2O Example: NUCAPS Project Reviews and Documentation

- Assembled and led the following reviews
 - » Preliminary Design Review
 - » Critical Design Review for Day 1 and 2 Products
 - » Unit Test Readiness Review for Day 1 and 2 Products
 - » Algorithm Readiness Review for Day 1 Products
 - » Algorithm Readiness Review for Day 2 Products
 - » Software Review
 - » Critical Design Review for Day 3 Products
- Developed and delivered project documentation for each phase
 - » SMM
 - » EUM
 - » ATBD
 - » RAD
 - » RID
 - » Review Slide Packages

R2O Example: NUCAPS Software Development

- Software development and update efforts
 - » Acquired CrIS and ATMS sample data provided by IPO
 - » Developed code following SPSRB coding standards
 - » Developed a near realtime simulation data generating system outputting IDPS-like HDF5 CrIS and ATMS (using GFS as input and a forward model)
 - Developed a near real time processing system to ingest the simulated data, mimic the NDE interfaces, ran the algorithm code, and distributed data to a STAR ftp server (all on a 24/7 basis)
 - » Developed readers for input data and writers for output
 - » Developed the pre and post-processing software for the NUCAPS retrieval algorithm
 - » Developed the software to spatially and spectrally thin the CrIS radiances
 - » Developed the netCDF4 to BUFR conversion software
 - » Developed the software to generate the validation products (daily gridded, binary, and matchup data sets)
 - » Developed software for product monitoring of SDRs and EDRs
 - » Cleaned up retrieval code and developed scripts to create and "operationalized" version of the code (remove diagnostic print statements)
 - » Ported retrieval code to the target platform (IBM AIX)
 - » Tracked updates in ClearCase revision control

R2O Example: NUCAPS Validation Efforts

Validation efforts

- » Delivered preliminary DAPs to prepare NDE for integration
- » Delivered test data products to NCEP, EUMETSAT, AWIPS, JCSDA
- » Reprocessed NUCAPS focus days for product validation
- » Reprocessed of the retrievals at the locations of AEROSE dedicated radiosondes for product validation
- » Providing data to NPROVS for product monitoring
- » Delivered monitoring product software to OSPO
- » Made CrIS BUFR and NUCAPS retrieval products available to end users
- » Coordinated with NDE, ESPC, and the STAR DMWG to gain access to the optional product output files here at STAR in support of validation and monitoring efforts
- » Validated the DAP contents

R2O Example: NUCAPS Additional Efforts

Additional efforts

- » Tracked and mitigated risks throughout the lifecycle of the project
- » Delivered Day 1 and Day 2 NDE-compliant DAPs to NDE
- » Assisted with NDE integration, troubleshooting, and validation after delivery
- » Handled project logistics and provided guidance to the NUCAPS science team to
 - Get links to documentation templates
 - Update schedules
 - Review process (advising on content, reviewing ATBD slides)
 - Assisting with access to tools and data sets, paperwork to access development hardware

Summary

- The STAR AIT role consists of working with science teams and the stakeholders to do the following:
 - » Conducting a standard set of project reviews
 - » Generating a standard set of documentation
 - » Stakeholder interaction
 - » Risk tracking and mitigation
 - » Code cleanup
- The STAR AIT R2O process is to each project depending on the scale, scope, and schedule
- The intended outcome of all this effort is meant to improve the lives of algorithm developers, operations, and end users so
 - » They can do their jobs
 - » Projects can enhance user readiness
 - » Reduce transition costs
 - » Improve maintainability of code in the long term