

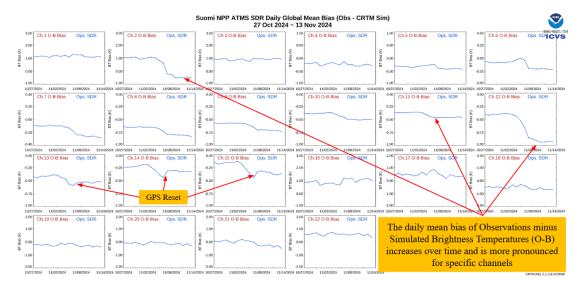
NOAA JPSS Monthly Program Office AMP/STAR FY25

Lihang Zhou, LEO Satellite Product Manager Ingrid Guch, Acting JPSS STAR Program Manager

December, 2024

STAR Supported the Recovery of the SNPP S/C After a Geolocation Anomaly

On November 2, at about 22:15 UTC, S-NPP started experiencing degradation of geolocation. Recovery activities commenced on November 6. The STAR Cal/Val Teams analyzed instrument data before and after the SNPP spacecraft recovery to enable OSPO to resume science data distribution. Before recovery, it was observed that ATMS and CrIS calibrated data showed degradation, characterized by radiometric biases consistent with increasing geolocation errors. Post-recovery analysis confirmed that all instruments returned to their previous nominal conditions. The SDR Cal/Val teams recommended resuming S-NPP data distribution following the completion of the corresponding data quality assessment activities.


- 300 - 280 260 L₂₄₀ B - 220 - 200 180

NPP CrIS-FS-SDR 20241103T000001 to 20241103T235433

Figure. Impact of the SNPP S/C Geolocation Anomaly on the geolocation of the CrIS calibrated data (left-side) and S-NPP CrIS vs GOES ABI radiometric Intercomparison (right-side), showing degraded radiometric fit on November 3, 2024, prior to spacecraft recovery (bottom scatter plot).

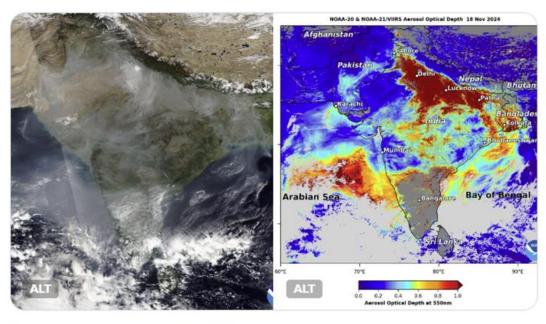
JPSS VIIRS Aerosol Imagery Captures Wintertime Smog in India

On November 6, 2024, the S-NPP ATMS scan drive compensator motor current significantly increased. This has resulted in a corresponding increase in scan drive mechanism temperature, shelf temperature, and other critical instrument modules. Because of this, changes in radiometric quality of the operational S-NPP ATMS Sensor Data Record (SDR) have been observed. In order to prevent possible damage to the instrument scan drive compensator motor function, S-NPP ATMS was placed in Safe Hold at 1690Z on November 19, 2024 and will be offline until further notice. The STAR ATMS SDR Calibration/Validation Team is investigating potential calibration updates to mitigate the impact of the scan motor current on the quality of the operational S-NPP ATMS SDR data.

Figure. Time series of the radiometric quality of the operational S-NPP ATMS SDR product in the form of Brightness Temperature Bias. An increase in instrument temperature due to a scan drive compensator motor increase has resulted in a measurable increase in brightness temperature biases for multiple S-NPP ATMS channels.

STAR is Providing Scientific Support on the S-NPP ATMS Scan Drive Compensator Motor Anomaly

Wintertime smog is an annual air quality event in South Asia, typically occurring during November to January. Comprised of smoke and haze aerosols, it is caused primarily by farmers burning crop residue to clear their fields. Strong surface inversions along the Indo-Gangetic Plain trap the fire emissions near the surface, leading to high concentrations of fine particles (PM_{25}), which are hazardous for human health. The VIIRS Aerosol Optical Depth (AOD) EDR product captured an episode of thick wintertime smog over India on November 18, 2024 that caused poor air quality in cities along the Indo-Gangetic Plain, including Delhi, Lucknow, and Patna. The JPSS Program social media feeds posted a NOAA-21 & NOAA-20 VIIRS composite AOD image highlighting the areas of thick smog in dark red, along with a corresponding NOAA-21 VIIRS true color image showing the grey-colored smog.



Joint Polar Satellite System (JPSS) 🕸 🚭 @JPSSProgram

On Nov. 18, 2024, the #NOAA21 satellite captured an image of gray smog over India.

A corresponding data composite, measuring Aerosol Optical Depth (AOD), highlights areas in dark red, indicating significant haze over cities in India like Delhi, Lucknow, and Patna.

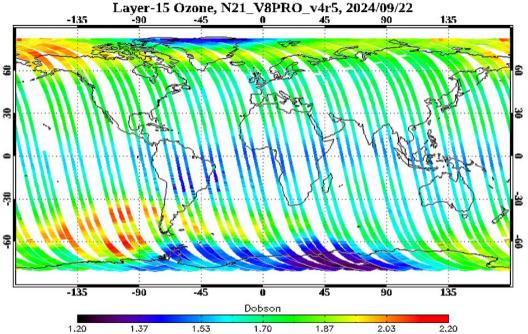
...

1:15 PM · Nov 19, 2024 · 4,889 Views

California Mountain Fire November 2024

Bill Line published a blog post titled "California Mountain Fire Nov 2024". The post shares GOES and VIIRS Imagery of the Mountain Fire from Nov 6-7, a wildfire that developed east of Oxnard, CA and quickly grew in the presence of strong and dry Santa Ana winds. See Figure below. The link to the post can be found <u>here</u>.

20241106 2048Z N20 VIIRS DayFire-RGB-I


Figure. 6 Nov 2024 NOAA-20 VIIRS 375-m Day Fire RGB Imagery.

Report on the Ozone Mapping and Profiler Suite (OMPS) Validated Maturity Review

The validated maturity review briefing for the Version 8 Ozone Profile Retrieval Algorithm (V8Pro) EDRs was successfully held on November 21, 2024. The latest delivery for the soft calibration adjustment table brings the performance of the NOAA-21 V8Pro ozone profile EDRs to within ±5% of the corresponding results for NOAA-20 and S-NPP globally. The presentation and readme memo will be available at:

https://www.star.nesdis.noaa.gov/jpss/AlgorithmMatu rity.php

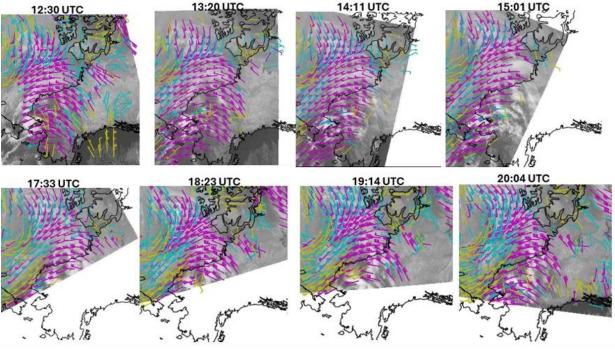

This will be the last maturity review for NOAA-21 products. All products are now declared validated.

Figure. False color image of the ozone profiles for a layer at 1 hPa for the three satellites for September 22, 2024. The NOAA-21 orbital track is the one on the right, NOAA-20 is on the left and S-NPP is in the middle.

Tandem JPSS Winds Product Captures Anomalous Strong Jet Steak North of Alaska

On 20 November 2024, a very strong jet streak moving over a positive tilted ridge of high pressure over southwest and north-central Alaska is observed. The strongest anomalies are observed to be northwest of Alaska with sigma of greater than 6 kt over the Chukchi Sea. Anomalies of 5 kt or greater extend over the Beaufort Sea north of Alaska. This is an extremely abnormal jet streak for this region at this time of year, as jet streak winds of this strength are expected to be much farther south over the northern Pacific Ocean or southern Bering Sea. The experimental VIIRS tandem winds product that is running at UW-CIMSS using the Enterprise algorithm with data from NOAA-20 and NOAA-21 was able to make out this feature.

Figure. AMV observations on 20 November 2024 from the VIIRS Tandem (NOAA-20/NOAA-21) Wind product starting at 12:30 UTC (upper-left) through 20:40 UTC (lower-right). Two observation times (15:52 and 16:44 UTC) are not shown due to a few missing granules. Times are polar crossings, with time separations between satellites usually 50 to 51 minutes. Yellow barbs are low level winds below 700 hPa, with cyan being mid-level from 700 to below 400 hPa and pink being upper level at or above 400 hPa. Wind speeds are given in ms⁻¹.

Accomplishments

Delivery Date	Cloud Containerized Algorithm Packages (CCAPs) – Enterprise Products:	Recipient		
11/01/2024	Final patch delivery of the JPSS Ice Concentration and Extent v2-1 CCAP to the NCCF S3 bucket to fix the change of year bug encountered in operations.	NCCF		
11/13/2024	This is a patch delivery of the eTRaP (using ATMS microwave sensors) CCAP to NCCF to fix one pixel that is erroneous.	NCCF		
11/14/2024	Final Delivery for MiRS release version 5 which includes the yearly maintenance update to the MiRS algorithm to v11.10. This includes removing the Snow Fall Rate algorithm from this package.			
11/14/2024	Delivery of the Snowfall Rate (SFR) v2-0 CCAP to CSPP. The package tarballs have been uploaded to the 'milk' servers.			
11/15/2024	ACSPO SST L3S Delivery: This is a patch delivery for integration into the NCCF PG system. This delivery fixes an occasional job failure in the L3S AM unit.			
11/15/2024	eTRAP Patch Delivery: This is a patch delivery of just the CODE/package/etrap/utils.py script, to correct a bug in the creation of the tar file.	NCCF		
11/25/2024	Delivery of OMPS V8PRO-v4r5 (STAR Science Team to ASSISTT)	ASSISTT		
11/29/2024	11/29/2024 QuickSounder ATMS initial pre-launch PCT (001) delivery (Related to NEON) STAR Science Team to ASSISTT			
12/03/2024	OMPS: V8TOS (SO2 Corrected V8 Total Ozone): v2 Final CCAP to CSPP. This delivery is for V8TOS Validated Maturity for N21 + error handling code			
12/06/2024	Patch delivery of the GAASP-Ocean_v1-1 (GCOM AMSR2) CCAP to the NCCF s3 bucket to fix two bugs found during the testing in operations	NCCF		

Accomplishments – JPSS Cal Val Support NOAA-20/21/S-NPP Operational Calibration Support:

				· · ·				
S-NPP	Weekly OMPS TC/NP Dark Table Updates	09/3/24, 09/10/24, 09/17/24, 11/26/24, 12/03/24	, 09/24/24, 10/1/24, 10/8/:	/24, 10/16/24, 10/22/24, 10/29/24, 11/5/24, 11/12/24, 11/19/24,	✓ Routine, Ongoing			
NOAA-20	Weekly OMPS TC/NP Dark Table Updates	09/3/24, 09/10/24, 09/17/24, 11/26/24, 12/03/24	, 09/24/24, 10/1/24, 10/8/:	/24, 10/16/24, 10/22/24, 10/29/24, 11/5/24, 11/12/24, 11/19/24,	✓ Routine, Ongoing			
NOAA-21	Weekly OMPS TC/NP Dark Table Updates	09/3/24, 09/10/24, 09/17/24, 11/26/24, 12/03/24	, 09/24/24, 10/1/24, 10/8/.	/24, 10/16/24, 10/22/24, 10/29/24, 11/5/24, 11/12/24, 11/19/24,	✓ Routine, Ongoing			
S-NPP	Bi-Weekly OMPS NP Wavelength & Solar Flux Update	09/10/24, 09/24/24, 10/8/24,	10/24, 09/24/24, 10/8/24, 10/22/24, 11/5/24, 11/19/24, 12/3/24					
NOAA-20	Bi-Weekly OMPS NP Wavelength & Solar Flux Update	09/03/24, 09/17/24, 10/1/24,	03/24, 09/17/24, 10/1/24 , 10/16/24, 10/29/24, 11/12/24, 11/26/24					
NOAA-21	Bi-Weekly OMPS NP Wavelength & Solar Flux Update	09/03/24, 09/17/24, 10/1/24,	/03/24, 09/17/24, 10/1/24 , 10/16/24, 10/29/24, 11/12/24, 11/26/24					
S-NPP	Monthly VIIRS LUT Update of DNB Offsets and Gains	9/9/24, 10/9/24, 11/7/24, 12/)/9/24, 10/9/24, 11/7/24, 12/6/24					
NOAA-20	Monthly VIIRS LUT Update of DNB Offsets and Gains	9/9/24, 10/9/24, 11/7/24, 12/	6/24		Routine,Ongoing			
NOAA-21	Monthly VIIRS LUT Update of DNB Offsets and Gains	9/9/24, 10/9/24, 11/7/24, 12/	6/24		✓ Routine, Ongoing			
NOAA-21	Monthly VIIRS DNB Straylight correction update	10/23/23, 11/21/23, 12/18/23 reuse earlier correction LUTs		8/18/24, 4/15/24, 5/14/24, 6/11/24, 7/16/24, 8/13/24 (Further updates	✓ Routine, Ongoing			
			Maturity Review	/S				
Product		Maturity Review	Review Date	Review Panel Recommendations				
OMPS NP	Ozone EDR (V8Pro)	Validated	ed 11/21/24 Attained Validated Maturity. The effective date we upon implementation of the latest tables.					
	A	II NOAA-21 produ	ucts attained V	alidated Maturity !!				

FY25 STAR JPSS Milestones (1 of 2)

Algorithm Updates DAPs/CCAPs	Original Date	Forecast Date	Actual Completion Date	Variance Explanation	Status
OPS LP Final CCAP (Continue tracking as FY25 milestone)	Jan-24	Nov-24	Delivered on December 3,2024.	ASSISTT team incorporated additional updates	🗸 Good
VOLCAT (Phase 1) NCCF implementation	Dec-23	May-24	SCR: August 17, 2023 Target CCAP Moved from January 9 to January 30, 2025 (ASSISTT to NCCF)	Updating a new HRIT reader. Also expecting other updates from the science team. Science team 2-3 additional weeks.	Being tracked as part of FY25
Cloud Mask J2 Validated; No code updates needed only maintenance CCAP (we can keep it as FY25 milestone). Tracked as FY25 maintenance releases	Mar-25	Mar-25	Target CCAP Moved from Feb 6 to March 18, 2025 (ASSISTT to NCCF)	Maintenance	Being tracked as part of
Cloud Base Height (CBH), Cloud Cover Layer (CCL), Cloud Height, Phase and Type: (Different CCAPs for Cloud implementation) J2 Validated: No code updates, only maintenance CCAPS. Tracked as FY25 maintenance release	Mar-25	Mar-25	Target CCAP Pushed one month from January to Feb 6, 2025 (possibility of moving into March 2025)	updates as well as solving for latency issues	FY25 Maintenance release
FY26 Program Management Review (all teams)	Jun-25	Jun-25	Continue as part of FY25 milestones		
GOSAT-GW End to End	Aug-24	Apr-25	GOSAT launch: April 2025. Will be continued as part of FY25 milestones	Continued from FY24 based on program timelines	Ongoing as part of FY25
AST-2024 (VIIRS Annual Surface Type)	Sep-25	Sep-25			Ongoing as part of FY25
Reprocessing and transfer of EDRs to CLASS	Sep-24	May-25	Continue as part of FY25 milestones	JSTAR Team submitted a request to CLASS to archive reprocessed AOD/ADP. CLASS is working on Engineering Assessment.	Ongoing as part of FY25

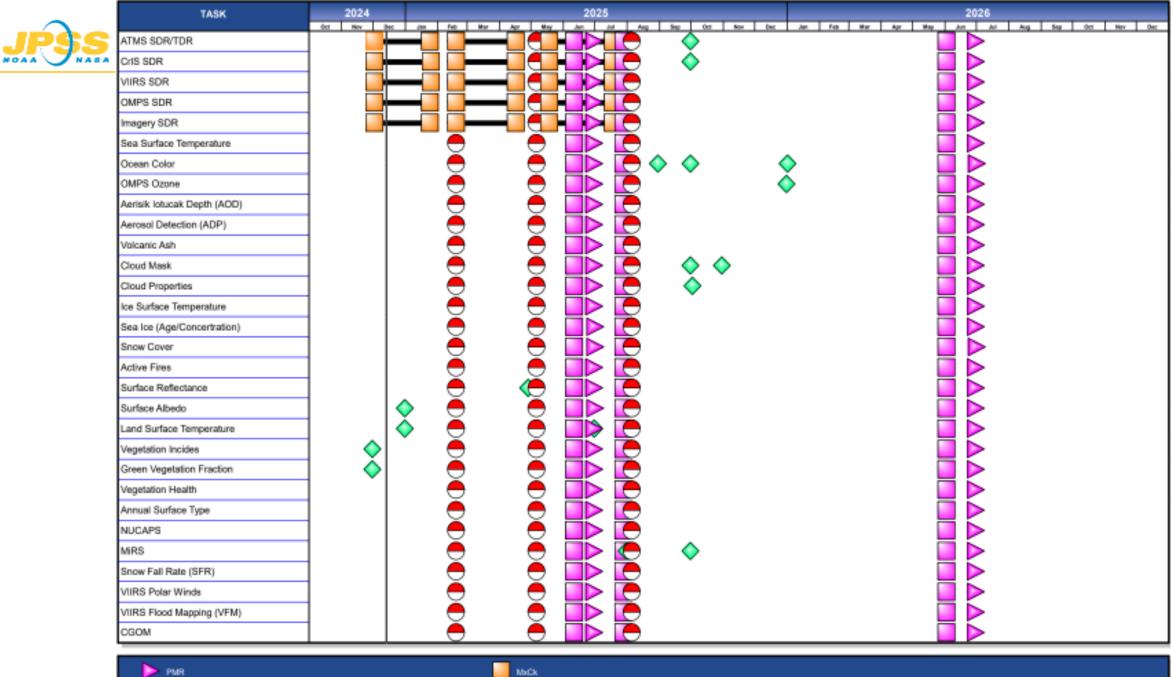
FY24/25 STAR JPSS Milestones (2 of 2)

Milestones (Algorithm Cal/Val and LTM)	Original Date	Forecast Date	Actual Date of Completion	Variance Explanation	Status	
Maintain / Update ICVS (develop ICVS modules to support various activities: monitoring, intersensor comparison,)	Sep-25	Sep-25	Follow FY25 PMR schedules		Ongoing	
Maintain / Expand (to include JPSS-2 products) JSTAR Mapper, adopting to STEMS	Sep-25	Sep-25	Follow FY25 PMR milestones		Ongoing	
Images of the Month	Monthly	Monthly	Follow FY25 PMR milestones		Ongoing	
JPSS-3/JPSS-4 pre-launch test data review/analysis and activity support (SDR teams);	Sep-25	Sep-25		FY24 milestones for J3 JCT1/JCT2, J3 Spacecraft TVAC, and J4 instrument TVAC completed as part of FY24 milestones. Science team efforts will continue in FY25.	Continuing as part of FY25 milestones	
J4 Pre-launch characterization reports for all SDRs: December 30, 2024	Dec-24	Mar-25			Ongoing	
SDR and VIIRS Imagery Cal/Val Plans that include finalized J4 schedules: June 30, 2025	Jun-25	Jun-25			Ongoing	
SDR and VIIRS Imagery Look-Up Table Deliveries for J4: June 30, 2025	Jun-25	Jun-25			Ongoing	

FY24/25 STAR JPSS Cal/Val Maturity Reviews All NOAA-21 products attained Validated Maturity !!

Milestones	Original Date	Forecast Date	Actual Date	Variance Explanation	Status
OMPS SDR (NP & TC Validated)	Mar-24	Mar-24	Attained Validated status – effective date depends on ADR10825 Solar Flux implementation planned for April 2024	· · · · · · · · · · · · · · · · · · ·	Good
Clouds (V: Mar-24)	Mar-24	Mar-24	Provisional Review held (except for DCOMP and NCOMP): October 26, 2023; Attained Provisional effective March 30. DCOMP and NCOMP Provisional Review occurred virtually on December 4, 2023, and attained Validated status effective March 30.		✔ Good
Aerosol AOD (V: Jun-24)	Jun-24	Jun-24	Attained Validated status effective March 30, 2023		Good
Aerosol ADP (V: Jun-24)	Jun-24	Jun-24	Attained Validated status effective March 30, 2023		Good
Volcanic Ash (V: Mar-24)	Aug-23	Aug-23	Attained Validated status effective March 30, 2023		Good
Cryosphere (B: May-23; P: Aug-23 for Sea Ice & Binary Snow; V: Feb-24 (SI & Binary Snow); V (other) :Jul-24	Jul-24	Jul-24	Ice Thickness/Age: Attained Validated status effective May 1, 2023. Snow Cover & Fraction: Attained Validated status effective May 1, 2023. IST and Ice Concentration: Attained Validated status effective May 1, 2023.		✔ Good
Active Fires (V: Jul-24)	Jul-24	Jul-24	Attained Validated status effective March 30,2023.		Good
LST/LSA/SR/GVF/VI (P: Jan-24; V: Jul-24 to Jan-25 FY25)	Sep-24	Sep-24	LST: Attained Validated status effective June 23, 2023. Surface Albedo: Attained Validated status effective August 30, 2023. Surface Reflectance: Attained Validated status effective Nov. 1, 2023. GVF, VI: Attained Validated status effective June 23, 2023.		✔ Good
Vegetation Health (V: Apr-25 FY-25)	FY-25	FY-25	Attained Validated status effective March 30, 2023		Good
Ocean Color (B/P: Jan-24; V:Jul-25 FY25)	Jan-24	Sep-23	Attained Validated status effective March 1, 2024, to coincide with data availability from the NOAA CoastWatch program and MSL12 version 1.61 algorithm LUTs		Good
SST (V: Aug-24)	Aug-24	Aug-24	Attained Validated status effective March 20, 2023		Good
VPW (B/P: Jan-24; V: Mar-24)	Mar-24	Mar-24	Attained Validated status effective November 16, 2023.		Good
VFM (V: Jan-25)	FY-25	FY-25	Attained Validated status December 14, 2023.		Good
NUCAPS P: Jan-25; V: Mar-Jun-24)	Jun-24	Jun-24	Attained Validated status effective September 26, 2023.		Good
MiRS (V:Oct-24)	Oct-24	Oct-24	Attained Validated status effective May 12, 2023		Good
SFR (P: Feb-24; V: May-24)	May-24	May-24	Attained Provisional status- effective upon v2r0 algorithm currently planned for July 2024. Validated maturity is expected (in May 2025) after collecting more data in the spring. However, based on the material presented and considering the fact that the NOAA-21 SFR already meets the requirement, the JPSS Program is considering approving validated maturity.		✔ Good
OMPS NP EDR V8Pro & V8TOz & V8TOS (V: Mar-24)	Mar-24	Mar-24	Validated review successfully completed for for V8TOz TC and V8TOS on 09/19/24. Validated Maturity review for NOAA-21 OMPS NP V8Pro held on November 22, 2024. Effective date of validated maturity upon implementation of the latest tables.		✔ Good
OMPS LP (B: Jan-24; P: Feb-24; V:Sep-24	Sep-24	Sep-24	Validated maturity review successfully completed on 9/19/24		Good
	NOA	A JPSS Program Offic	e Monthly - OFFICIAL USE ONLY		12

FY25 STAR JPSS Milestones - JPSS Cal Val Support


Operational/Program Support	Original Date	Forecast Date	Actual Completion Date	Status
S-NPP: Weekly OMPS TC/NP Dark Table Updates	Weekly	Weekly	09/3/24, 09/10/24, 09/17/24, 09/24/24, 10/1/24, 10/8/24, 10/16/24, 10/22/24, 10/29/24, 11/5/24, 11/12/24, 11/19/24, 11/26/24, 12/03/24	✓ Routine, Ongoing
S-NPP: Bi-Weekly OMPS NP Wavelength & Solar Flux	Bi-Weekly	Bi-Weekly	09/10/24, 09/24/24, 10/8/24, 10/22/24, 11/5/24, 11/19/24, 12/3/24	✓ Routine, Ongoing
S-NPP: Monthly VIIRS LUT update of DNB Offsets and Gains	Monthly	Monthly	9/9/24, 10/9/24, 11/7/24, 12/6/24	✓ Routine, Ongoing
NOAA-20: Weekly OMPS TC/NP Dark Table Updates	Weekly	Weekly	09/3/24, 09/10/24, 09/17/24, 09/24/24, 10/1/24, 10/8/24, 10/16/24, 10/22/24, 10/29/24, 11/5/24, 11/12/24, 11/19/24, 11/26/24, 12/03/24	✓ Routine, Ongoing
NOAA-20: Bi-Weekly OMPS NP Wavelength & Solar Flux	Bi-Weekly	Bi-Weekly	09/03/24, 09/17/24, 10/1/24, 10/16/24, 10/29/24, 11/12/24, 11/26/24	✓ Routine, Ongoing
NOAA-20: Monthly VIIRS LUT update of DNB Offsets and Gains,	Monthly	Monthly	9/9/24, 10/9/24, 11/7/24, 12/6/24	✓ Routine, Ongoing
NOAA-21: Weekly OMPS TC/NP Dark Table Updates	Weekly	Weekly	09/3/24, 09/10/24, 09/17/24, 09/24/24, 10/1/24, 10/8/24, 10/16/24, 10/22/24, 10/29/24, 11/5/24, 11/12/24, 11/19/24, 11/26/24, 12/03/24	✓ Routine, Ongoing
NOAA-21: Bi-Weekly OMPS NP Wavelength & Solar Flux	Bi-Weekly	Bi-Weekly	09/03/24, 09/17/24, 10/1/24, 10/16/24, 10/29/24, 11/12/24, 11/26/24	✓ Routine, Ongoing
NOAA-21: Monthly VIIRS LUT update of DNB Offsets and Gains	Monthly	Monthly	9/9/24, 10/9/24, 11/7/24, 12/6/24	✓ Routine, Ongoing

FY 25 IDPS Mx Build Review/Checkout

IDPS Mx Schedule	Mx12	Mx13	Mx14
SOL (DP_FE) regression test	Nov. 4 – Dec. 9, 2024	Feb. 18 - Mar. 18, 2025	May. 15 – Jun. 17, 2025
STAR SOL review/checkout feedback (Go/No-Go & Report)	Offline verification by STAR team for J3/J4 VIIRS granule size change using early look of Mx12 ADL	Mar. 18, 2025	Jun. 17, 2025
I&T (DP-TE) regression test	Dec. 19, 2024 - Jan. 23, 2025	Apr. 3 – Apr. 16, 2025	Jul. 3 – Jul. 18, 2025
STAR I&T review/checkout feedback (Go/No-Go & Report)	Jan. 23, 2025	Apr. 16, 2025	Jul. 18, 2025
ТТО	Feb. 18, 2025	May. 6, 2025	Aug. 5, 2025

14

JCT

J-STAR FY25 Planned Program Management Staffing Plan v Actuals

★ Total FTE Cum Planned 🛛 🔴 Total FTE Cum Actual

CS: Vacant (prev. Alisa Young)

WYE: Qingyuan Richard Zhang (through Dec), Prasanjit Dash, Murty Divakarla, Tom Atkins, Jeffrey Weinrich, Wei W. Li, Tess Valenzuela

NOAA JPSS Program Office Monthly • OFFICIAL USE ONLY

Color code: Green: Completed Milestones Gray: Ongoing FY24 Milestones

Active Fires

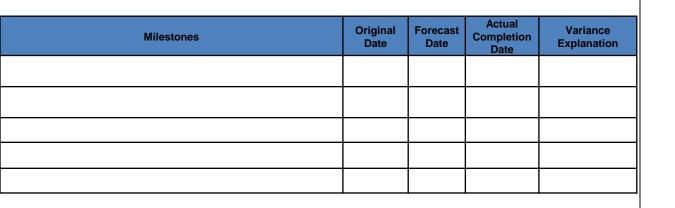
Accomplishments / Events:

- Started analysis of the EFIRE data record to evaluate algorithm performance for a wide range or observing and environmental conditions
- Presented poster "The NOAA Reprocessed VIIRS Active Fire Data Record" at the 2024 EUMETSAT Meteorological Satellite Conference
- Continued work on NGFS vs. EFIRE comparisons based on GINA NGFS data

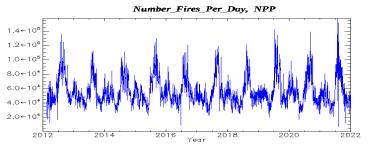
Overall Status:

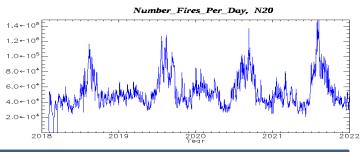
	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

1. Project has completed.


2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.


4. Project has fallen significantly behind schedule, and/or significantly over budget.


Issues/Risks:

Highlight: long-term EFIRE VIIRS I-band data record

Time series of total daily number of detected VIIRS I-band fire pixels in the reprocessed EFIRE data record

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: eFire cal/val	September 2025			
Subtask 1.1: Evaluate Suomi NPP and NOAA-20 reprocessed data record	March 2025			
Subtask 1.2: Identify environmental and observing conditions with inferior algorithm performance	June 2025			
Subtask 1.3: Create science code update for algorithm improvements	September 2025			
Task 2: eFire – NGFS cross-verification	September 2025			
Subtask 2.1: Generate cross-verification datasets, including opportunistic in-situ reference data	December 2024			
Subtask 2.2: Generate / update opportunistic in-situ reference data	March 2025			
Subtask 2.3: Generate statistical analysis for eFire – NGFS detection performance	September 2025			
Task 3: Direct Broadcast support	September 2025			
Subtask 3.1: Feasibility analysis for CSPP update	December 2024			
Subtask 3.2: Implementation of science code updates as determined by Task 4.2	March 2025			
Subtask 3.3: CSPP user support as needed for transition	September 2025			
Task 4: Maintenance, LTM and anomaly resolution	September 2025			
Subtask 4.1: Reactive maintenance of Suomi NPP, NOAA-20 and NOAA-21 I-band NCCF products	September 2025			
Subtask 4.2: Sensor anomaly resolution support	September 2025			
Subtask 4.3: Suomi NPP, NOAA-20 NOAA-21 data analysis and feedback	September 2025			

Accomplishments / Events:

- Work done by STAR aerosol team is featured in NESDIS Impacts Briefings in the article entitled "Pollution". Team members Hai Zhang, Michael Cheeseman, and Pubu Ciren contributed to the work that is part of this article
- NOAA Greenhouse Gas (GHG) Team co-lead Kondragunta wrote the Impact Briefings article on GHGs. JPSS Program Scientist Kalluri and JSTAR manager Zhou and Jeff Privette (also NOAA GHG team co-lead) also contributed to the article on GHGs
- Team member Cheeseman has done a lot of analyses using reprocessed aerosol optical depth data to understand the Environmental Justice aspect of fine particle pollution. This work is informing that despite meeting the health standard, fine particle pollution disproportionately impacts racially and economically disadvantaged communities
- Team member Huff contributed to the writing of QuickGuide for VIIRS aerosol optical depth product. She also provided half-a-day training in Singapore on the use of JPSS fire and smoke products. JPSS Program Scientist Kalluri and AAC team lead Kondragunta also provided lectures on air quality products and their applications for Association of Southeast Nations (ASEAN).
- Team member Limbacher is developing a new aerosol optical depth algorithm that includes new aerosol models and numerical methods that is expected to speed up the enterprise algorithm and hopefully provide better retrievals as well.

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation

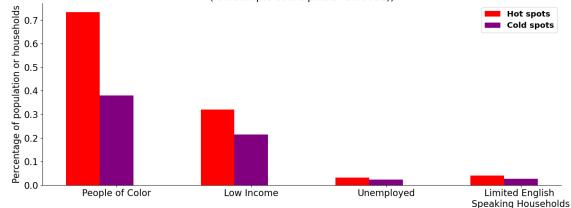
Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

1. Project has completed.

2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.


4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

No risks. Issue: Developer of the ML-SFRA has left the team; date of milestone is TBD.

<u>Highlight:</u>

Socioeconomic demographics in Cold vs Hot spots (Atlanta, 98th percentile $PM_{2.5}$ (low sample count pixels removed))

Statistics in the figure show analysis for Atlanta where hot spots and cold spots are those areas with high and low fine particle pollution respectively based on Moran's I analysis

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: Deliver updated bright-land Enterprise AOD algorithm	September 2025			
Subtask 1.1: Generate special dataset of satellite reflectances and reference surface AOD over bright land	January 2025			
Subtask 1.2: Develop new LUTs and PCTs for over bright-land retrieval	June 2025			
Subtask 1.3: Test updated algorithm over bright land and quantify improvement	August 2025			
Subtask 1.4: Deliver updated bright-land AOD algorithm to ASSISTT	September 2025			
Task 2: Develop an alternative method to AOD retrieval with simultaneous spectral fitting	September 2025			
Subtask 2.1: Complete theoretical design of using simultaneous multi-spectral reflectance fitting for AOD retrieval	April 2025			
Subtask 2.2: Complete coding and testing of new AOD algorithm	August 2025			
Subtask 2.3: Deliver new AOD algorithm to ASSISTT if its performance is superior to the current algorithm	September 2025			
Task 3: Deliver evaluation of all enterprise AOD products	September 2025			
Subtask 3.1: Complete assessment of a multi-year VIIRS EPS SNPP, NOAA-20 and NOAA-21 AOD	August 2025			
Subtask 3.2: Complete evaluation of an extended record of merged/gridded VIIRS global AOD products	September 2025			
Task 4: Evaluate merits of TEMPO/PACE aerosol data for improving VIIRS AOD retrievals	September 2025			
Subtask 4.1: Understand available TEMPO/PACE aerosol data	December 2024			
Subtask 4.2: Develop theoretical framework for using TEMPO/PACE aerosol information	June 2025			
Subtask 4.3: Implement, test and evaluate concept	August 2025			
Subtask 4.4: Submit assessment report to team lead	September 2025			

ATMS SDR

Accomplishments / Events:

- On November 6, 2024, the S-NPP ATMS scan drive compensator motor current significantly increased (from about 200 mA to about 3A) and the ATMS SDR team performed a calibration Assessment. This direct radiometric calibration change can be seen in the daily mean bias of Observations minus Simulated Brightness Temperatures (O-B) (Figure 1). Particularly channels 2 and channels 5 through 12 are clearly affected, with some channels being more pronounced (such as channel 12 being as large as 1.5 K). In addition, this anomaly has created a slight degradation in channel-dependent NE Δ T (but still within specifications).
- The NOAA-21, NOAA-20, and S-NPP ATMS PCA BT residuals with decimation factor 4 (24 FOR and 1 scan line out of 4, or case3) were examined for channels 3
- Currently Developing ATMS-Tropics Intercomparison using Big Circle Method
- Documenting and Deriving the ATMS SDR nonlinearity calibration equations, for the benefit of improving the ATMS nonlinear calibration capabilities and to enhance the ATBD.

Milestones	Original Date	Forecast Date	Actual Date	Variance Explanation
JPSS-3 SN306 ATMS Pre-launch Characterization Report	Dec-24	Dec-24		
Update ATMS ATBD	Mar-25	Mar-25		
Final Version of the JPSS-4 SN305 ATMS Cal/Val Plan	Jun-25	Jun-25		
Review/Checkout of IDPS Mx Builds SOL and I&T Deploy Regression data	Sep-25	Sep-25		
Support JPSS-4/JPSS-3 JCT and Test events (J3 Pre-Storage TVAC, IDPS JPSS-3/JPSS-4 Test data Flow, etc.)	Sep-25	Sep-25		
Radiometric inter-comparison of S-NPP, NOAA-20 and NOAA-21 ATMS SDR data against other LEO/GEO Microwave observations and GNSS-RO.	Sep-25	Sep-25		
NOAA-21 ATMS Spectral Response Function (SRF) analysis/report to allow replacement of simulated NOAA-21 ATMS SRFs with measured values	Sep-25	Sep-25		
Evaluate the ATMS Geolocation accuracy assessment tool and determine if the current sliding window can be reduced from 30-day period to a shorter period	Sep-25	Sep-25		
Enhance the ATMS Calibration Website with new capabilities for rapid anomaly and SDR data evaluation response	Sep-25	Sep-25		

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

Project has completed. 1

2. Project is within budget, scope and on schedule.

Project has deviated slightly from the plan but should recover. З.

Project has fallen significantly behind schedule, and/or significantly over budget. 4

MW Intercomparison Ocean, Day Only, A 2023-06-01T03:05:41 - 2024-0

2023-06 2023-07 2023-08 2023-09 2023-10

Issues/Risks:

Highlights:

Figure 3:

Intercomparison of

TROPICS 03, 05,

TROPICS channel -5.0

NOAA-20 with

06, and 07 for

10 and ATMS

channel 20

Figure 1:S-NPP ATMS SDR minus Simulated Daily Brightness Temperature Bias (plots by Ninghai Sun). An increase in instrument temperature due to a scan drive compensator motor increase has resulted in a measurable increase in brightness temperature biases ith second to COTM aims dation for multiple shows all

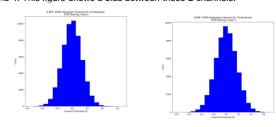
J1/T3

11/T5 J1/T6

11/T

10.0

7.5 -


0.0

-2.5

-7.5

-10.0

Figure 2: Histogram distribution of the residuals for S-NPP channel 3 and 4. This figure shows a bias between these 2 channels.

	Fig 4:	Construction of the second	
ATMS #20, TROPICS #10 01-31T22:06:47	Documentat	Endance	
	ion of	Radiomeser compute (counts) Figure 2: Full Nonlinear radiance calibration equations (1), (7) and (8 the ATMS ATBD Rev-B, Jun 2022	8). From
	ATMS	Thus, plugging this into equation (17),	
and the second	Nonlinearity	$R_v = R_e + (R_w - R_e)0 + \mu((R_w - R_e)^2(A0^2 + B0 + D))$ = $R_v + \mu((R_w - R_e)^2(D).$	(19a) (19b)
a la la construction de la construction auropa	Derivation	Therefore, subtracting R_e from both sides:	
	Derivation	$0 = \mu (R_w - R_c)^2 (D),$	(20)
		which is only valid if $D = 0$. We can now continuo with using our third assumption $x - C_w \Rightarrow h$ For a normalized scene count equal to the warm scene counts:	$R_s = R_w$
·		$x_w = (\overline{C_w} - \overline{C_c})/(\overline{C_w} - \overline{C_c}) = 1.$	(21)
		Thus, plugging this, $R_{a}=R_{w}$, and $D=0$ into equation (16):	
2023-11 2023-12 2024-01 2024-02		$R_w = R_c + (R_w - R_c) 1 + \mu (R_w - R_c)^2 (A 1^2 + B 1 + 0)$	(22a

 $R_w = R_c + (R_w - R_c) + \mu (R_w - R_c)^2 (A + B)$

FY25 Milestones/Deliverables (1/2)

Task Category	Task/Description	Start	Finish	Deliverable	Requirement (Dev Only)
	(1) Develop and test calibration algorithm for improvement of SDR data product.	10/1/2024	7/31/2025	Report	
Development (D)	(2) Review and analysis of JPSS-3 and JPSS-4 ATMS pre-launch data to provide Flight and Ground support.	10/1/2024	9/30/2025	DAP/Report	
	(3) Support ATMS SDR processing system assessment and refinement.	10/1/2024	9/30/2025	DAP	
Integration &	(1) ATMS SDR code integration with ADL	10/1/2024	9/30/2025	ADL package	
Testing (I)	(2) Review/Checkout of IDPS Mx Builds SOL and I&T Deploy Regression data.	10/1/2024	9/30/2025	Report	
	(3) Sustain the quality of SNPP, NOAA-20 and NOAA-21 ATMS SDR data products.	10/1/2024	9/30/2025	Report	
	(4) Support J4/J3 JCT and Test events (J3 Pre-Storage TVAC, IDPS J3/J4 Test data Flow, etc.)	10/1/2024	9/30/2025	Report	
Calibration &	(5) Cal/Val planning of J3/J4 post-launch	10/1/2024	9/30/2025	Report	
Validation (C)	(6) Deliver J4 Pre-launch Characterization Report	10/1/2024	12/31/2025	Report	
	(7) Radiometric inter-comparison of S-NPP, NOAA-20 and NOAA-21 ATMS SDR data against other LEO/GEO Microwave observations and GNSS-RO.	10/1/2024	9/30/2025	Report	
	(8) Support new developments and studies align with NOAA' mission to improve value and usage of present and future satellite data	10/1/2024	9/30/2025	Report	

DAP: Delivery Algorithm Package. PCT: Processing Coefficient Table. LUT: Look-Up Table. JCT: Joint Compatibility Test. I&T: Integration and Test

FY25 Milestones/Deliverables (2/2)

Task Category	Task/Description	Start	Finish	Deliverable	Requirement (Dev Only)
	(1) ATMS SDR team day-to-day management and coordination.	10/1/2024	9/30/2025	Report	
	(2) Discrepancy and risk reports to inform present or potential departures from specifications due to the presence of anomalies.	10/1/2024	9/30/2025	Report	
Management &	(3) Annual, quarterly, monthly and weekly ATMS SDR performance reports.	10/1/2024	9/30/2025	Report	
Maintenance	(4) Update ATMS ATBD.	10/1/2024	3/31/2025	Report	
(M)	(5) Support of ATMS SDR JPSS reviews and science meetings.	10/1/2024	9/30/2025	Report	
	(6) Report results in international conferences.	10/1/2024	9/30/2025	Presentation	
	(7) Submit manuscripts.	10/1/2024	9/30/2025	Manuscript	
LTM & Anomaly Resolution (L)	(2) Perform regular RDR and SDR data analysis for instrument and data health.	10/1/2024	9/30/2025	Reports	
	(3) Implement new or improved capabilities for LTM, after properly assessing the methodologies for the validation and monitoring of the ATMS instruments and SDR data.	10/1/2024	9/30/2025	Reports	
	(4) Support anomaly event investigation and resolution of SNPP, NOAA-20 and NOAA-21 ATMS sensors.	10/1/2024	9/30/2025	Reports and solutions	

DR: Discrepancy Report. ATBD: Algorithm Theoretical Basis Document. RDR: Raw Data Record. SDR: Raw Data Record. LTM: Long Term Monitoring.

Clouds

Accomplishments / Events:

• The Cloud team received the updated SAPF code with the updated ECM and DCOMP code. There is a discussion within the ECM team about whether the current implementation of the scattering angle is correct or a different method, which was previously used, is the correct method that needs to be used. The ECM team will make a decision by early 2025 as to the correct methodology needed for the ECM team.

Milestones	Original Date	Forecas t Date	Actual Completion Date	Variance Explanation
Develop VIIRS/CALIOP validation tools for JPSS-2	Dec-22	TBD	Jun 23	Code completed but requires N21 data to test
Integrate latest Enterprise Cloud Mask (ECM) version within NDE	Dec-22	Dec-22	Mar-23	A future update will be made post Provisional
Prepare Cloud Base Height (CBH)/Cloud Cover Layers (CCL) algorithm transition and operation for JPSS-2	Jan-23	Apr-23		Algorithm is being evaluated for Prov maturity
Integrate new ECM lookup table to allow easier threshold changes	Mar-23	Sept-24	Sept 24	Validation of the new LUT is ongoing
JPSS-2 Beta Review (ECM)	Apr-23	Jun-23	June-23	Changed due to Transmitter issue
Validate CCL that was recently delivered, especially convective/supercooled layers as part of CCL Beta review	Jul-23	Dec-24		Ongoing
NOAA-21 Cloud Products Beta Maturity	Jul-23	Nov-23		COMP at end of Nov. Others Prov
NOAA-21 Cloud Products Provisional Maturity	Aug-23	Nov-23		COMP at end of Nov. Others Prov

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

1. Project has completed.

2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

None

<u>Highlights:</u>

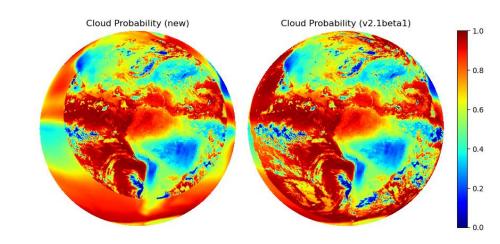


Figure 1.This shows the effect on the refl38 classifier from the ECM demonstrating the effect of the current (left) methodology for the scattering angle vs the previous methodology of the scattering angle (right.

Cloud Team FY25 Milestones

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
FY25 Program Management Review	Aug-24	Aug-24	Aug-24	
FY25 Mid-term Program Management Review	Dec-24	Dec-24		
Assist with operational DAP deliveries, updates, and post-delivery product reviews	Sep-25	1-4Q		
Conduct long term monitoring of all products	Sep-25	1-4Q		
Investigate DCOMP sensitivity to ice crystal habit and channel-set for cirrus clouds	Sep-25	1-4Q		
Enhance and maintain websites as a public interface to access product imagery	Sep-25	1-4Q		
In collaboration with Polar Winds team, investigate ACHA performance as it relates to Atmospheric Motion Vector (AMV) height assignment	Sep-25	1-4Q		
Prepare CLAVRx cloud top phase algorithm to replace current operational cloud phase algorithm	Sep-25	1-4Q		
Investigate new AI/ML techniques to improve multiple products (e.g., ECM, DCOMP/NCOMP)	Sep-25	1-4Q		
Investigate DCOMP precipitation applications	Sep-25	1-4Q		
Prepare tools that leverage new datasets for algorithm development and validation (e.g., EarthCARE)	Sep-25	1-4Q		

Cloud Team FY25 Milestones

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Continue evaluating all products using surface and satellite observations	Sep-25	1-4Q		
Interact with operational users and obtain user feedback	Sep-25	1-4Q		
Develop a test data package to help AWIPS-2 implementation and develop enhanced product displays based on user feedback	Sep-25	1-4Q		
Provide algorithm cal/val documents and review materials	Sep-25	1-4Q		
Continue product demonstration and public release for general users	Sep-25	1-4Q		
Identify limitations of products through continued intensive validation and refine algorithms accordingly	Sep-25	1-4Q		
Provide information on prospective algorithm refinements to improve operational algorithm performance	Sep-25	1-4Q		
Support JPSS Aviation and Hydrology Initiatives	Sep-25	1-4Q		
Update ATBD's as needed	Sep-25	1-4Q		

1-4Q in the above table denotes that the specific milestone listed is ongoing algorithm developmental work that will likely span the entire year. Quarterly updates will be provided as needed.

CrIS SDR

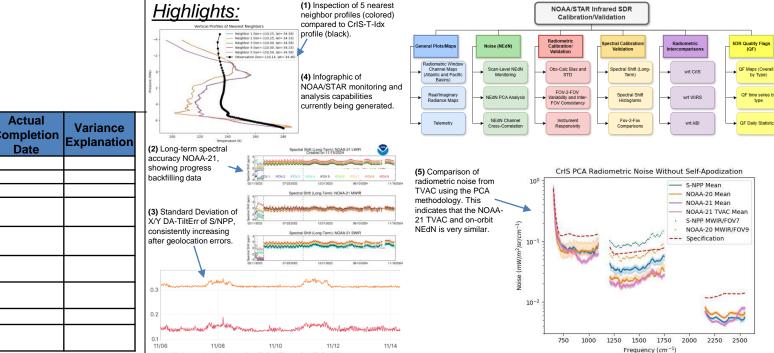
November 2024

Overall Status

Accomplishments / Events:

- · Continued investigation into enhanced CrIS Pressure Level Imagery using Radiance Temperature Index (Fig. 1)
- Backfilled long-term monitoring to correct for recent data gaps. (Fig. 2)
- Supported investigation of S-NPP geolocation errors on 2024-11-06. S-NPP CrIS performed as expected, consistent with past events. (Fig. 3)
- Installed CRTM Coefficient Generation Package on STAR servers, and started work to make it work in STAR environment to support CrIS Cal/Val activities.
- Continued monitoring of all CrIS instruments.
- · Supported meetings with EUMETSAT in preparation for METOP-SG Cal/Val activities. (Fig. 4)
- · Performed analysis on radiometric noise using the PCA methodology for comparing NOAA-21 TVAC vs on-orbit. (Fig. 5)

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation			
Cost / Budget		х						
Technical / Programmatic		х	х	х	See Issues/Risks			
Schedule Project has completed	(х		See Issues/Risks			


Project is within budget, scope and on schedule Project has deviated slightly from the plan but should recover.

DA-XTiltErr - DA-YTiltErr - DA-XTiltErr STD - DA-YTiltErr STD

З. 4 Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

Red: It has been announced that JPSS-4 TVAC data and documents are now ITAR. STAR IT does not have a secured environment to host or process ITAR data ellow: The CrIS Team is still in need of hardware resources. Presently, there is only two servers dedicated to 5 CrIS Team members. Access to additional servers is still desirable. There is a risk for the CrIS SDR Team to continue on such a dual-server environment for the operational CrIS Cal/Val activities that include 5 CrIS sensors (SNPP JPSS-1 to -4). This may affect the timely completion of deliverables and program milestones. The recommendation is to have one additional server as soon as possible (< 2 months) and add another server in the next months. Corresponding hardware quotations and SNO have been submitted. Corresponding JSTAR CrIS Risk/Issue on Hardware and Software have been submitted for JSTAR interval review on Jan. 6, 2023. UPDATE: The purchasing of the corresponding hardware is currently in progress, in coordination with STAR IT. A new MATLAB license has been delivered and installed properly. There was a SCDR data disruption starting June 30 and ending July 11. Data gaps are unfilled 30 days later. This complicated S/NPP GPS Anomaly investigations. SCDR outages may be increasing. Blue: ASSIST Team has agreed to accept ADL code change tested on CentOS 9.

Category	Original Date	Actual Completion Date	Variance Explanation	
Sustain	Dec-24			
Sustain	Jun-25			
Sustain	Jun-25			
Sustain	Sep-25			
Sustain	Sep-25			
Sustain	Sep-25			
Maintain	Sep-25			
Maintain	Sep-25			
Maintain	Sep-25			
	Sustain Sustain Sustain Sustain Sustain Sustain Maintain	CategoryDateSustainDec-24SustainJun-25SustainJun-25SustainSep-25SustainSep-25SustainSep-25MaintainSep-25MaintainSep-25	CategoryOriginal DateCompletion DateSustainDec-24SustainJun-25SustainJun-25SustainSep-25SustainSep-25SustainSep-25MaintainSep-25MaintainSep-25	CategoryOriginal DateCompletion DateVariance ExplanationSustainDec-24

FY25 Milestones/Deliverables (1/2)

Task Category	Task/Description	Start	Finish	Deliverable	Requirement (Dev Only)
	(1) Implement and test calibration solutions for imaginary radiance reduction in the NOAA-21 CrIS SDR product.	10/1/2024	6/30/2025	Report	
Development (D)	(2) Review and analysis of JPSS-3 and JPSS-4 CrIS pre-launch data to provide Flight and Ground support.	10/1/2024	9/30/2025	DAP/Report	
	(3) Support CrIS SDR processing system assessment and refinement.	10/1/2024	9/30/2025	DAP	
Integration &	(1) CrIS SDR code integration with ADL	10/1/2024	9/30/2025	ADL package	
Testing (I)	(2) Review/Checkout of IDPS Mx Builds SOL and I&T Deploy Regression data.	10/1/2024	9/30/2025	Report	
	(3) Sustain the quality of SNPP, NOAA-20 and NOAA-21 CrIS SDR data products.	10/1/2024	9/30/2025	Report	
	(4) Support J4/J3 JCT and Test events (J3 Pre-Storage TVAC, IDPS J3/J4 Test data Flow, etc.)	10/1/2024	9/30/2025	Report	
Calibration &	(5) Cal/Val planning of J3/J4 post-launch	10/1/2024	9/30/2025	Report	
Validation (C)	(6) Deliver J4 Pre-launch Characterization Report	10/1/2024	12/31/2025	Report	
	(7) Radiometric inter-comparison of S-NPP, NOAA-20 and NOAA-21 CrIS SDR data against other LEO/GEP IR observations and GNSS-RO.	10/1/2024	9/30/2025	Report	
	(8) Support new developments and studies align with NOAA' mission to improve value and usage of present and future satellite data	10/1/2024	9/30/2025	Report	

DAP: Delivery Algorithm Package. PCT: Processing Coefficient Table. LUT: Look-Up Table. JCT: Joint Compatibility Test. I&T: Integration and Test

FY25 Milestones/Deliverables (2/2)

Task Category	Task/Description	Start	Finish	Deliverable	Requirement (Dev Only)
	(1) CrIS SDR team day-to-day management and coordination.	10/1/2024	9/30/2025	Report	
	(2) Discrepancy and risk reports to inform present or potential departures from specifications due to the presence of anomalies.	10/1/2024	9/30/2025	Report	
Management &	(3) Annual, quarterly, monthly and weekly CrIS SDR performance reports.	10/1/2024	9/30/2025	Report	
Maintenance	(4) Update CrIS ATBD.	10/1/2024	3/31/2025	Report	
(M)	(5) Support of CrIS SDR JPSS reviews and science meetings.	10/1/2024	9/30/2025	Report	
	(6) Report results in international conferences.	10/1/2024	9/30/2025	Presentation	
	(7) Submit manuscripts.	10/1/2024	9/30/2025	Manuscript	
	(1) Upgrade the JSTAR CrIS Website.	10/1/2024	9/30/2025	Website	
LTM &	(2) Perform regular RDR and SDR data analysis for instrument and data health.	10/1/2024	9/30/2025	Reports	
Anomaly Resolution (L)	(3) Implement new or improved capabilities for LTM, after properly assessing the methodologies for the validation and monitoring of the CrIS instruments and SDR data.	10/1/2024	9/30/2025	Reports	
	(4) Support anomaly event investigation and resolution of SNPP, NOAA-20 and NOAA-21 CrIS sensors.	10/1/2024	9/30/2025	Reports and solutions	

DR: Discrepancy Report. ATBD: Algorithm Theoretical Basis Document. RDR: Raw Data Record. SDR: Raw Data Record. LTM: Long Term Monitoring.

Cryosphere

Figure 1. Sea ice thickness retrieved with

EPS-SG proxy data on January 4, 2020,

Accomplishments / Events:

Two major improvements to the Enterprise Ice Thickness product:

The Enterprise JPSS/GOES Ice Thickness/Age algorithm is the product of the Onedimensional Thermodynamic Ice Model (OTIM) that uses the Enterprise Ice Surface Temperature (IST) as a major input. Previously, the IST, which is the skin temperature of the ice or snow, was assumed to be the same as the snow-ice interface temperature if snow is present on the ice. In situ surface and snow-ice interface temperatures from the Surface Heat Budget of the Arctic Ocean (SHEBA) field campaign (1997-1998) are used to infer a relationship between the two through a regression model that has two different equations for day (1) or night (2) conditions.

The second major improvement to the OTIM is the replacement of snow depth climatology lookup tables for estimating snow depth to the use of a snow depth regression model derived from SHEBA observations. Again, two different equations are used depending on day (3) versus night (4) conditions. A comparison between the OTIM before and after the improvements is given in Figure 1. The mean and median differences for this case were observed to be 6 cm, with noticeable lower ice thickness values in the eastern Laptev Sea west of the New Siberian Islands. Similar results are expected to be observed when the improvements are tested with more VIIRS and GOES data.

Routine assessment of the GOES-19 ABI Binary Snow product accuracy has begun:

A comparison of GOES-19 snow retrieval with snow retrievals from operational geostationary satellites (GOES-16 and GOES-18) has demonstrated a similar rate of agreement of all satellite products to the IMS. This is illustrated by Figure 2, which presents a time series of the accuracy estimates of GOES-19 and GOES-16 snow products. On some days the products may drop below 90%, but overall, the mean accuracy is generally within 92 to 96%. This may be considered as another indication of a good quality of GOES-19 ABI snow products.

The results presented so far should be considered as preliminary since at this time of the year there is too little snow on the ground to allow a full-scale validation of the GOES-19 snow product. Nevertheless, the available results are encouraging and leave little doubts about the robust and reliable performance of GOES-19 snow products during the winter season.

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

1. Project has completed.

2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Mean Acc 98.3 93.7 93.1 94.2 93.1

Issues/Risks: None

Year

Highlights:

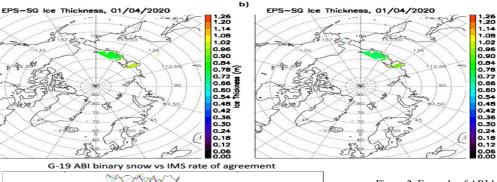


Figure 2. Example of ABI-based snow cover maps (G-16 and G-17) and matching IMS products on the same day and on the day after. ABI snow maps exhibit a better agreement to the IMS product labeled with the next day date. This is _explained by a different approach to the time stamping of the two products.

GCES-19 ABI ve IMS

FY25 Milestones/Deliverables (in general)

Task Category	Task/ Description	Start	Finish	Deliverable	Requirement (Dev Only)
Development (D)	Blend AMSR2 into the VIIRS binary snow product, finalize the algorithm, Begin routine offline generation.	10/2024	9/2025	Routinely generated daily blended gap-free snow map based on combined VIIRS and microwave data	Same as snow product EDRs
Development (D)	Melting/frozen snow pack discrimination. Algorithm and software development	10/2024	9/2025	Daily map of the snowpack state (melting/frozen)	Same as snow cover EDR
Development (D)	Upgrade web-page displaying VIIRS snow cover products. Enable viewing and analysis of gridded snow product at full (1km) spatial resolution	10/2024	9/2025	Enhanced web page	N/A
Development (D)	Finalize supplemental cloud mask for daily VIIRS snow products: Compensate for weaknesses of the cloud mask	10/2024	9/2025	Final algorithm and software to generate VIIRS supplemental cloud mask	N/A
Development (D)	Melt/freeze discrimination and degrees above melting.(Daytime only)	10/2024	9/2025	Expansion of IST product	Enhanced usability by analysts and forecasters.

FY25 Milestones/Deliverables (in general)

Task Category	Task/ Description	Start	Finish	Deliverable	Requirement (Dev Only)
Development (D)	Updates on the ice surface temperature, including research on impacts of angular emissivity of snow and ice	06/2024	03/2025	IST surface temperature algorithm update	Improved accuracy for all users
Integration and Testing (I&T)	Improvements to the Sea Ice Concentration product.	10/2023	9/2026	Algorithm enhancements to improve SIC near sea ice edge	Same as ice concentration EDR
Integration and Testing (I&T)	Include Blended SIC and NOAA- 21 ice products into RealEarth	10/2024	09/2025	Graphics	Streamlined validation
Integration and Testing (I&T)	Improvements to the Ice Thickness and age products.	10/2024	9/2025	Improved ice thermal and physical dynamic parameterizations (growing and melting processes), using ice- snow interface temperature product	IceAge EDR
Maintenance	Additions and Improvements to Blended Sea Ice Concentration product	10/2024	9/2025	Include observational weights into output Netcdf files.	Request by users

Polar Winds

<u>Accomplishments / Events:</u>

- **Tandem JPSS winds for SWIR band are now generated:** Currently, VIIRS single band Atmospheric Motion Vectors (AMVs) from the shortwave-infrared band (SWIR, M11, 2.2 μ m) is being prepared for operational implementation in the near future. The next logical step was to expand the use of SWIR band into the tandem orbit setting, where successive orbits of NOAA-20 and -21 satellites are used to develop AMVs with greater coverage and smaller time differences, which should result in a more accurate winds product. Recent examples of the experiment product are shown in Figure 1.
- The Tandem SWIR product does a good job in covering mid-upper-level wind motions associated with jet stream across northern Russia and mid-lower-level winds associated with polar cyclone over the central Arctic. Initial comparisons to single JPSS SWIR AMVs (either NOAA-20 or -21) show speed (direction) RMS of under 3 ms⁻¹ (20 deg).

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

1. Project has completed.

2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

None

Highlights:

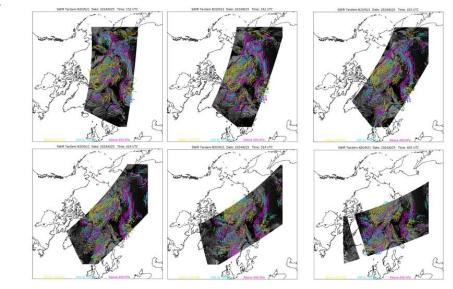


Figure 1: VIIRS JPSS (NOAA20/21) Tandem SWIR AMVs overlaid with 2.2 μm reflectances from 25 June 2024 over the Arctic region in polar stereographic projection. Near polar crossing times starting from upper-left and ending at

Status of FY25 Milestones/Deliverables (1/2)

Task Category	Task/ Description	Start	Finish	Deliverable	Requirement (Dev Only)
Development (D)	Demonstration and validation of Polar <i>"Tandem-Satellite"</i> VIIRS SWIR & LWIR wind datasets over a 4-6 week time period and make them available to NWP Centers	Aug 2024	Jun 2025	Polar <i>"Tandem-Satellite"</i> VIIRS SWIR & LWIR wind BUFR datasets; Wind validation results	Refer to IORD/L1RD; NESDIS priorities.
Development (D)	Incorporate VIIRS DNB (Near-Constant Contrast) updates from heritage to enterprise winds algorithm in FW2.x	Aug 2024	Jun 2025	Updated enterprise winds software.	INNOVATION
Development (D)	Develop and validate approaches to generate VIIRS winds from tandem-satellite pairs of images (enables global coverage)	Aug 2024	Jun 2025	Updated enterprise winds software Validation study reports	INNOVATION
Development (D)	Feature tracking QC for VIIRS winds: Investigate scan angle diffs between successive orbits & impact on VIIRS winds quality; account for parallax	Aug 2024	Jun 2025	Informal/internal assessment report. Updates to enterprise winds software	
Development (D)	Development of updated VPW Validation and monitoring system	Oct 2024	Jun 2025	Updated validation software Updated winds monitoring web pages Documentation	

Status of FY25 Milestones/Deliverables (2/2)

Task Category	Task/ Description	Start	Finish	Deliverable	Requirement (Dev Only)
Integration & Testing (I)	Support transition of " Single-Satellite " VIIRS SWIR winds into operations	Oct 2024	Sep 2025 (Est)	Validation reports	Refer to IORD/L1RD; NESDIS priorities
Integration & Testing (I)	Begin transition of <i>"Tandem-Satellite"</i> VIIRS LWIR and SWIR winds to operations <i>(if funded)</i>	Oct 2024	Sep 2025 (Est)	Updated enterprise winds software & enterprise winds ATBD Validation reports	Refer to IORD/L1RD; NESDIS priorities
Calibration & Validation (C)					
Maintenance	Deliver enterprise winds algorithm updates, as needed	Oct 2024	Sep 2025	Updated software, as needed; Updated Enterprise Winds ATBD, as needed	
	Dev and testing of minor algorithm updates as needed.			Graphics, statistics Webpage product monitoring graphics;	
LTM & Anomaly Resolution (L)	Continued monitoring and validation of VPW winds; Addition of ERA5 analysis to winds team's validation tool set	Oct 2024	Sep 2025	Updated winds validation/monitoring software, as needed	

GCOM-W/AMSR2

Accomplishments / Events:

Intercomparison of AMSR2 and VIIRS-AMSR2 Blended Sea Ice Concentration Monthly Composites: An intercomparison of monthly composites of sea ice concentration (SIC) for April, May and June 2024 over the Arctic has been completed. The AMSR2 SIC product uses the NASA Team-2 algorithm, while the VIIRS SIC data that goes into the blend uses the Enterprise algorithm with the blending method discussed further in Dworak et al. 2021. Individual monthly composites for each product are shown in Figure 1. Visual comparison of the monthly composites for both AMSR2 and Blended (VIIRS+AMSR2) show little difference between them. A more detailed statistical analysis is shown in Table 1. The comparison (Blend-AMSR2) is only made when either product has an observable SIC greater than 0. Overall, the bias is miniscule; accuracies are within a few percentage points, standard deviations and root mean squared (rms) differences are in between 5-7%. Of note is the average SIC values over the Arctic being around 88% in April, 84% in May and 80% in June for both products, showing a similar decrease in SIC as we move further into the summer melt season. Next, the differences in SIC for each month are plotted in Figure 2 and show in detail, locations of disparities between the two SICs. Most noticeable are that larger differences in general tend to be located near the sea ice edge and coastlines. For example, in April AMSR2 produces larger SIC (as much as 20% higher) values across the northern Barents Sea, in between Novaya Zemlya and Svalbard near the sea ice edge (see Figure 1).

Another example is across the southern Laptev Sea where the Blended produces larger SIC of about 5-10%. Also, of note is the area across the eastern Beaufort Sea in June, where AMSR2 produces 5-10% higher SIC. This area was observed to have a large break up of sea ice, producing a complex SIC field that was not well captured by the lower resolution AMSR2 data (see Figure 3). Further intercomparisons of the SICs are expected soon, with expanded analysis to include the Antarctic and autumn freeze up season over the Arctic.

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

Project has completed.

2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

Highlights:

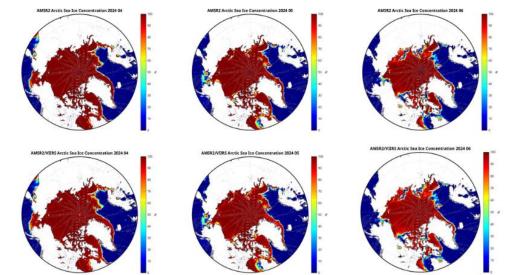
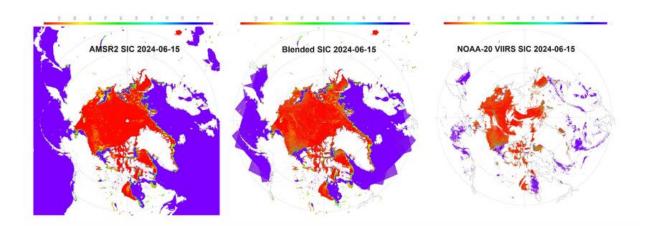



Figure 1. Top row Monthly average Sea Ice Concentration (SIC) from AMSR2 NASA Team-2 algorithm for April (left), May (middle) and June (right) 2024. Bottom is from the AMSR2+VIIRS blended sea ice concentration for the same months.

Statistic	Apr-2024	May-2024	June-2024
Bias (Blend-AMSR2)	+0.091	-0.0045	-0.2042
Accuracy	2.2303	1.9711	2.4211
Standard Deviation	6.5036	5.8114	5.8537
RMS	6.8754	6.1366	6.3347
Avg. Blend	88.9123	84.4858	80.6336
Avg. AMSR2	88.8214	84.4903	80.8378

Table 1: Statistical data comparison of Sea Ice Concentration (SIC) differences between Blended and AMSR2 product for each month. Note that a comparison is only made when either the Blended or AMSR2 have an observed ice pixel (SIC>0%).

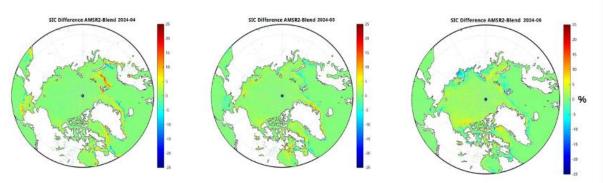


Figure 3. Daily composite SIC for 15 June 2024 from AMSR2 (left), Blend (middle) and NOAA-20 VIIRS (right).

Figure 2. Differences in Monthly average Sea Ice Concentration (SIC) of AMSR2 versus AMSR2+VIIRS blended sea ice concentration for April (left), May (middle) and June (right) 2024.

Task Category	Task/ Description	Start	Finish	Deliverable	Requirement (Dev Only)
Development (D)	Assessment of all EDR's for AMSR2, initiate changes for AMSR3	Oct 2024	Sept 2025	Beta versions of Pre-launch algorithms and LUTs	Refer to IORD/L1RD; NESDIS priorities; STAR- National Center User Engagements
Integration & Testing (I)	Reprocessing of L2 EDR's	Nov 2024	July 2025	Full L2 products from launch through July 2023	
Calibration & Validation (C)	Continue AMSR2 L1 monitoring; develop AMSR3 capabilities	Oct 2024	Sept 2025	Annual cal/val report; AMSR3 prototype off-line system	
Maintenance	Deliver any algorithm updates	Jan 2025	May 2025	Updated code to ASSISTT	

Accomplishments / Events:

- Made a big effort for the transition from one member who left on 11/30/2024, to other ICVS members: The transition covers the ICVS VIIRS LTM, CrIS-VIIRS, OMPS-VIIRS geolocation accuracy, OMPS LP LTM, and hurricane 3D warm code animation modules.
- Support the NPP ATMS scan drive motor current anomaly and science data impact discussion. Provided NPP ATMS TDR O-B bias long term trending figures to demonstrate the systematic change of TDR/SDR data feature during the comp motor anomaly event. It is also recorded that the maximum scan drive mechanism temperature keeps at more than 50 degree for several days. To protect the impact to ATMS units, NPP ATMS was switched to safehold mode from November 19, 2024. ICVS will continue to provide support to OSPO and NASA Flight teams when NPP ATMS is switched to operational mode later.
- Backed processed SNPP OMPS SDR and VIIRS SDR M15 band to fulfill the gaps in the long term trending of DCC reflectance. The result is shown in Figure 2.
- Analyzed N21 CrIS data quality impacted by the propulsive Retro Maneuver (RTO) on 11/13, 2024. The direct impact is the sudden increase of the stage cooler temperatures which triggered the scan-level quality flag of 'invalid instrument temperatures. The Deep space view data was also impacted by this anomaly and most of the DS data during this anomaly was discarded from the calibration window, triggering degraded overall data quality for all three bands

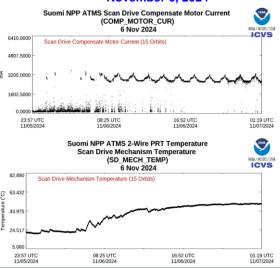
Milestone	Original Date	Completion Date	Variance Explanation	
Identify ICVS-lite modules for transition to OSPO operational environment in coordination with OSPO	Nov-24	Nov-24		
Initialize new algorithms/functions to monitor SDR data's quality in terms of requirements using NOAA-21 SDR data as test data sets	Feb-25			
Develop a new monitoring framework to improve timeliness and performance in preparation of J3/J4 missions	May-25			
Initialize an algorithm for estimating OMPS NM geolocation errors in the absence of VIIRS data from the same satellite	Aug-25			Αm
Continue supporting NCCF cloud migration discovery activity: test the ICVS functions in cloud as needed	Sep-25			
Develop new ICVS algorithms\modules in support of future JPSS-04/03 missions	Sept-25			
Support JPSS spacecrafts and instruments recovery activities, JPSS data anomaly analysis activities by STAR SDR and EDR teams, JPSS flight, OSPO and NWP	Sep-25			(°C)
Maintain and sustain the LT ICVS product monitoring performance for SNPP, NOAA-20, NOAA-21, including 3D-ATMS-VIIRS SDR hurricane core observations	Sep-25			Temperature
Support STAR SDR calibration/validation activities, including innovation idea test, and LEO program's ad hoc requests (e.g., SDR data impact demonstration)	Sep-25			

Overall Status:

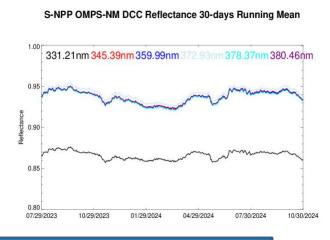
	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

. Project has completed.

2. Project is within budget, scope and on <u>schedule</u>.


3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.


Issues/Risks: One key ICVS member left lead to intensive work transitions; likely delay or missed products in ICVS website due to limited resources now; a replacement for the left member is in process.

<u>Highlights:</u>

Figure 1 NPP ATMS comp motor current and scan drive mechanism temperature anomaly from November 6, 2024

Figure 2 Back processed S-NPP OMPS NM vs VIIRS M15 DCC reflectance 30-day running mean back to July 2023

ICVS FY25 Milestones/Deliverables

	Mi	lestone		Start		Finish		Deliverable		
1	Identify ICVS-lite modules for the environment in coordination with		operational	Oct-24	Ν	Nov-24	Deliver	ice basic functions of the		
2	Initialize new algorithms/function terms of requirements using NO		• •	Dec-24	F	Feb-25	21 instr	ument SDR radiand	ated color table about NOAA- ce (Tb or reflectance or equirement: green, yellow, red	
3	Develop a new monitoring fram performance in preparation of .	-	meliness and	Mar-25	Ν	May-25	A new r	nonitoring framewo	rk within the ICVS system	
4	Initialize an algorithm for estimation in the absence of VIIRS data fr	0 0		Apr-25	A	Aug-25	Softwar	oducts		
5	Continue supporting NCCF clout the ICVS functions in cloud as r	•	ery activity: test	Feb-25	S	Sep-25	Software; testing results, updated discovery book			
6	Develop new ICVS algorithms\f future JPSS-04/03 missions	unctions/modules ir	n support of	May-25	S	Sept-25	Module	Module Software and proxy J4 ICVS products		
7	Support JPSS spacecrafts and JPSS data anomaly analysis ac teams, JPSS flight team, OSPC	ctivities by STAR SE		Oct-24	S	Sep-25	ICVS p	products; JPSS data	a anomaly monitoring reports	
8	Maintain and sustain the LT ICV for SNPP, NOAA-20, NOAA-21 hurricane core observations			Oct-24	S	Sep-25	ICVS products; module software updates			
9	Support STAR SDR calibration, innovation idea test, and LEO p SDR data impact demonstration	orogram's ad hoc re		Oct-24	S	Sep-25	Softwar	Software; new ICVS products		
		D	1	С		М		L		
		Development	Integration &Testing	Calibration & Validat	tion	Maintena	ince	LTM & Anomaly Resolution		

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: Maintain the LT consistency of ICVS products in a NRT mode for monitoring of RDR and SDR LT performance spanning 3 spacecrafts and 12 instruments from SNPP, NOAA-20 and NOAA-21 missions	October 2024 to September 2025			
Subtask 1.1: Check the availability of ICVS products in case of any missed products or unexpected stopped cron-jobs	October 2024 to September 2025			
Subtask 1.2: Fix the issues to recover unexpected stopped cron-jobs	October 2024 to September 2025			
Subtask 1.3: Reprocess the data to fill in missed products	October 2024 to September 2025			
Subtask 1.4: Produce historical (intermediate) ICVS products per ad hoc requests from key users	Ad hoc			
Task 2: Monitor LT performance of the JPSS spacecrafts, instruments and SDR data in a NRT mode and report anomalous feature monitoring results in support SDR team and other key users	October 2024 to September 2025			
Subtask 2.1: Monitor performance of the JPSS spacecrafts, instruments and SDR data based on current ICVS products	October 2024 to September 2025			
Subtask 2.2: Provide monitoring reports with good ICVS images in the presence of newly detected anomalies for spacecraft, instrument and SDR data	October 2024 to September 2025			
Task 3: Maintain and upgrade the ICVS severe weather event (radiometric) feature watch portal in a NRT mode	October 2024 to September 2025			
Subtask 3.1: Maintain the ICVS ATMS-VIIRS 3D hurricane warm core monitoring system and analysis tools (e.g., Heat Dome) for other severe events	October 2024 to September 2025			
Subtask 3.2: Provide briefing report with good images per event in a timely manner	October 2024 to September 2025			
Subtask 3.3: Improve AI-based ATMS global high resolution images for Mapper	October 2024 to September 2025			
Subtask 3.4: Develop new functions to better demonstrate new values of SDR data in visually observing severe events' radiometric features such as heat wave and atmospheric rivers	Ad hoc			

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
<i>Task 4:</i> Monitor and upgrade the N21 LP EDR products in the ICVS web site in support of OMPS EDR review and other cal./val activities	October 2024 to September 2025			
Subtask 4.1: Update the ICVS-LP monitoring functions by adding available N21 LP data from the STAR EDR team.	September 2024			
Subtask 4.2: Promote the LP monitoring functions to operational ICVS website	December 2024			
Subtask 4.3: Maintain the ICVS LP product website	October 2024 to September 2025			
Task 5: Upgrade the ICVS interactive vector tool by adding new products and functions	September 2025			
Subtask 5.1: Upgrade the ICVS dynamic interactive tool in the beta ICVS zone by filling in the non- available products in the tables(https://www.star.nesdis.noaa.gov/icvs-beta/metrics_new.php)	November 2024			
Subtask 5.2: Upgrade the ICVS dynamic interactive tool with new functions/products towards promotion to operational zone in coordination with the STAR IT team	January 2025			
Subtask 5.4: Promote the ICVS dynamic interactive tool with new functions to operational ICVS	March 2025			
Subtask 5.3: Maintain and upgrade the ICVS website framework in operational, beta and development zones	October 2024 through September 2025			
Task 6: Upgrade the operational ICVS system functions to better monitor/compare LT stability of the spacecrafts/instruments/SDR among 3 JPSS missions	March 2025			
Subtask 6.1: Develop new modules to monitor the same parameter in the same figure for <u>3 spacecrafts</u> (only key parameters)	October 2024			
Subtask 6.2: Develop new modules to monitor the same RDR parameter in the same figure for <u>the same</u> <u>instrument among three satellites</u> (only key parameters)	November 2024			
Subtask 6.3: Develop new modules to monitor the same statistical parameters (e.g., daily mean and std. over selected sites) in SDR products in the same figure for <u>the same instrument among three satellites</u>	February 2025			
Subtask 6.4: Upgrade the ICVS inter-sensor comparison and other advanced capabilities by adding new products to better capture anomalous features in the SDR data	March 2025			

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 7: Develop new ICVS algorithms\modules in support of existing and future JPSS-04 missions	July 2025			
Subtask 7.1: Develop new ICVS modules about OMPS RTM O-B test cases	February 2025			
Subtask 7.2: Update the VIIRS inter-sensor comparison modules by adding NOAA-21 VIIRS	March 2025			
Subtask 7.3: Reprocess the ATMS lifetime O-B trending to improve the accuracy by using measured SRF	May 2025			
Subtask 7.4: Reprocess JPSS lifetime data with improved quality monitoring algorithms/modules	July 2025			
Task 8: Continue supporting NCCF cloud migration discovery activity	September 2025			
Subtask 8.1: Reorganize ICVS testing modules that will be migrated into the NCCF environment	February 2025			
Subtask 8.2: Convert selected code in Matlab into Python (limit to small efforts)	April 2025			
Subtask 8.3: Migrate the ICVS testing modules into the NCCF environment	June 2025			
Subtask 8.4: Verify the ICVS testing modules in the NCCF environment with off-line ICVS modules' results	September 2025			
Task 9: Develop the ICVS prototype in support of JPSS-4 prelaunch Cal/Val activities in the STAR internal development zone	September 2025			
Subtask 9.1: Upgrade the ICVS development website in compliance with IT security requirements	March 2025			
Subtask 9.2: Develop the ICVS framework for JPSS-04 by using NOAA-21 RDR as proxy	June 2025			
Subtask 9.2: Develop the ICVS framework for JPSS-04 by using NOAA-21 SDR as proxy	August 2025			
Subtask 9.3: Develop the ICVS modules in support of SDR teams' J3/J4 JCT test data sets	September 2025			

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 10: Explore potential of monitoring geolocation performance upon individual instrument SDR data in preparation of JPSS-04 missions	February 2025			
Subtask 10.1: Investigate the feasibility of monitoring geolocation performance by using individual instrument SDR data at window channels: case studies, e.g., OMPS NM at 380nm	October 2024			
Subtask 10.2: Initialize testing modules for more case applications	January 2025			
Subtask 10.3: Add the testing modules to ICVS website in development zone	February 2025			
Task 11: Develop a new monitoring framework within the ICVS system to improve timeliness and performance in preparation of J3/J4 missions	April 2025			
Subtask 11.1: Initialize a conceptual region-based ICVS monitoring framework (e.g., divide the whole global coverage into 24 regions)	October 2024			
Subtask 11.2: Initialize modules to monitor performance of regional data, including but not limited to daily regional images, daily 'anomaly' images against a multiple-day average, time series of regional data (daily 'anomaly')	December 2024			
Subtask 11.3: Improve the framework and algorithms with regional products towards operational transition	April 2025			
Task 12: Develop a conceptual PCA-based monitoring framework within the ICVS system to better monitor hyperspectral satellite data quality	June 2025			
Subtask 12.1: Initialize a conceptual PCA-based monitoring framework for JPSS hyperspectral instruments (e.g., OMPS NM, OMPS NP, and CrIS)	October 2024			
Subtask 12.2: Initialize PCA algorithm developments for OMPS and CrIS over selected regions (see Task 11)	March 2025			
Subtask 12.3: Explore potential of PCA-derived products in monitoring and detecting SDR data anomalies	June 2025			

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 13: Explore potentials of developing automation monitoring functions for the ICVS system by using innovation techniques in better preparation of J3/J4 missions	September 2025			
Subtask 13.1: Investigate feasibility of automatically generating analysis report per event based on the ICVS products from multiple sensors' observations, by taking advantages of task 11 above	March 2025			
Subtask 13.2: Develop preliminary innovation-based algorithms to automatically capture large anomaly features, which could be relevant to either radiometric features from severe weather events or spacecraft/instrument/SDR data problems	May 2025			
Subtask 13.3: Explore potentials of the new ICVS monitoring functions and innovation algorithms in better capturing impact of JPSS SDR data in better benefit of key users' applications	September 2025			
<i>Task 14: Develop an initial algorithm/module to generate OMPS</i> NM Super-Resolution (NOAA-21 resolution) data using CNN in support of geolocation performance monitoring of JPSS OMPS NM SDR data	August 2025			
Subtask 14.1: Investigate the feasibility of generating OMPS NM Super-Resolution data using CNN	March 2025			
Subtask 14.2: Initialize a testing algorithm for SNPP and NOAA-20	June 2025			
Subtask 14.2: Investigate potential of newly generated super-resolution SNPP/NOAA-20 NM SDR data in the geolocation performance monitoring analysis	August 2025			

VIIRS Imagery

Accomplishments / Events:

- Began using NODD for some VIIRS Imagery processing
 - Noted absence of M-band Imagery files
- VIIRS Sea Spray RGB recipe updated for CIRA SLIDER and NWS/AK
- Presentations highlighting VIIRS Imagery
 - "The Role of Weather Satellites in Observing the World", Josh Reiter (CIRA), OR&R Lecture Series: You Don't Know What You Don't Know
- Blog Posts with VIIRS Imagery
 - California Mountain Fire Nov 2024
 - <u>Alaska Sea Spray Nov 2024</u>
- 19 VIIRS Imagery Posts on CIRA Social Media (X) this Month. A few posts:
 - VIIRS nighttime NCC Imagery of US west coast cyclone (16.9K views)
 - VIIRS Day Fire RGB of Mountain Fire (12K views)
 - <u>VIIRS Snowmelt RGB of melting Colorado snowpack (2.8K views)</u>

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		x			
Schedule		Х			

1. Project has completed.

2. Project is within budget, scope and on schedule.


3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

Highlights: Image of the Month

Figure: VIIRS Sea Spray RGB captures sea spray across the western Gulf of Alaska. From <u>Alaska Sea Spray Nov 2024</u>

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: Evaluate/validate VIIRS Imagery EDRs routinely and as part of JPSS ground systems tests.	Ongoing			
Subtask 1.1:				
Subtask 1.2:				
Subtask 1.3:				
Task 2: Continue to pursue the development of new DNB-to-NCC LUTs using recently optimized DNB ASF tool code	Sep - 25			
Subtask 2.1: Generate DNB-to-NCC LUTs specific to NOAA-20, NOAA-21, and S-NPP using new DNB ASF tool code	Mar - 25			
Subtask 2.2: Use new DNB-to-NCC LUTs to produce NCC imagery for each VIIRS, and compare imagery to that using the operational LUT	Jun - 25			
Subtask 2.3: Upon evaluation, if imagery has similar or better quality to that using operational LUT, then pursue operational implementation of new DNB-to-NCC LUTs for each VIIRS.	Sep - 25			
Task 3: Support JPSS Program outreach efforts through the Image Production subgroup.	Ongoing			
Subtask 3.1: Assist the JPSS Program Office and the JPSS Imagery Cal/Val team lead through the production of VIIRS imagery examples	Ongoing			
Subtask 3.2: Distribute VIIRS Imagery examples for use in public relations materials, scientific presentations given by JPSS Program management, forecaster training materials, social media, and scientific blog posts, among others.	Ongoing			
Subtask 3.3:				
Task 4: JPSS-3 and JPSS-4 Cal/Val preparation activities, as requested by the JPSS Program Office.	As Needed			
Subtask 4.1: Cal/val plans and maturity schedules	As Needed			
Subtask 4.2: Data systems test events	As Needed			
Subtask 4.3:				

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 5: Continue to support development and production of VIIRS-related products for Polar SLIDER (https://rammb-slider.cira.colostate.edu/?sat=jpss), CIRA-produced VIIRS imagery products that are delivered to CIMSS' RealEarth website (https://realearth.ssec.wisc.edu), and similar products that are produced at UAF/GINA for distribution to NWS Alaska Region offices.	Ongoing			
Subtask 5.1:				
Subtask 5.2:				
Subtask 5.3:				
Task 6: Coordinate with NESDIS/STAR/JPSS, NWS representatives, TOWR-S, and the JPSS Satellite Liaison on the delivery, display, and training of VIIRS imagery products to the NWS and solicit user feedback	Ongoing			
Subtask 6.1: Newly developed VIIRS Imagery Multispectral products	Ongoing			
Subtask 6.2: CrIS Imagery	Ongoing			
Subtask 6.3: VIIRS Imagery for CONUS users	Ongoing			
Task 7: Provide interesting VIIRS Imagery and Blogs on a regular basis throughout grant period, as well as provide presentations and publications where appropriate.	Ongoing			
Subtask 7.1:				
Subtask 7.2:				
Subtask 7.3:				
Task 8: Contribute to monthly reports on the VIIRS Imagery EDR Team activities, and participate in Imagery Team meetings and relevant JPSS science meetings.	Ongoing			
Subtask 8.1:				
Subtask 8.2:				
Subtask 8.3:				
Task 9: Blowing Dust Climatology Paper submitted (includes VIIRS Imagery)	Sep - 25			
Task 9: CrIS Imagery Paper submitted	Mar - 25			
Task 9: Blowing Snow Paper submitted	Jun - 25			

Leaf Area Index

November 2024

Accomplishments / Events:

- Prepared for the upcoming Operational Readiness Review, including the generation of local verification datasets, ground LAI measurements, matched LAI products, and near real-time NASA VIIRS LAI data for inter-comparison.
- Held a meeting with the EMC model team to follow up on user requirements, evaluate LAI performance in the Noah-MP model, and discuss the future test plan.
- At the request of model users, investigated the availability and methodology of the stem area index (SAI) dataset and explored approaches to provide practical SAI for model applications.
- Continued work on improving the LAI algorithm, including summarizing LAI validation results, conducting uncertainty analyses, and enhancing temporal smoothing methods using machine learning techniques.

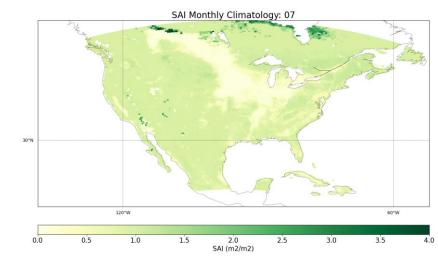
Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
CCAP final Delivery	Feb-24	Feb-24	Apr 1, 2024	
Incorporate the LAI test data into the LSM model to evaluate the performance in the model	May-24	May-24	May 30, 2024	
Operational readiness	Jul-24	Jul-24	September 2024	ASSIST team postponed due to verification data preparation
Develop LAI routine monitoring and validation tool	Sep-24	Sep-24		
Apply the LAI routine monitoring and validation tool on the operational product	Dec-24	Dec-24		
LAI operation data verification and adjustment	Mar-25	Mar-25		

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

1. Project has completed.

2. Project is within budget, scope and on schedule.

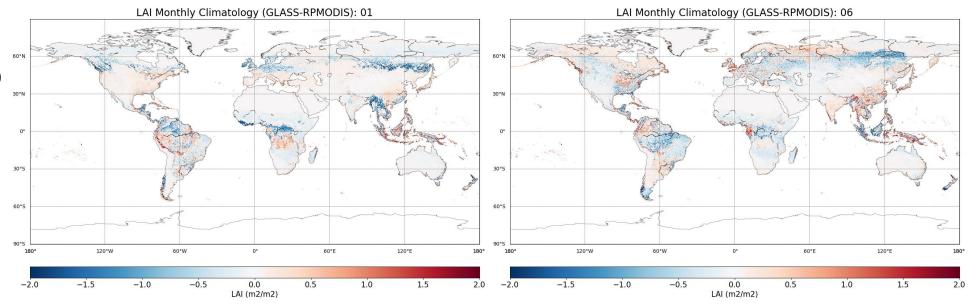

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

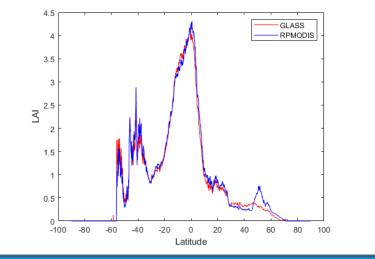
Issues/Risks:

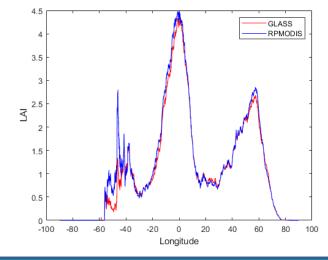
None

<u>Highlights:</u>


Investigate the Stem Area Index data and practical method (empirical algorithm, Zeng 2002) to provide for the Noah-MP model.

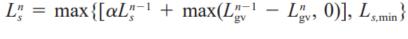
LAI Monthly Climatology Evaluation

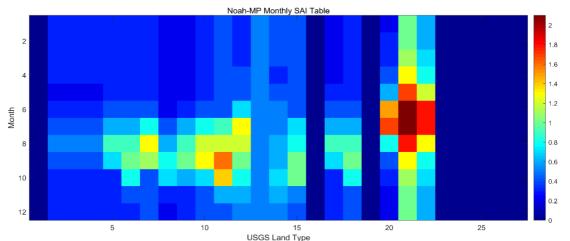

November 2024



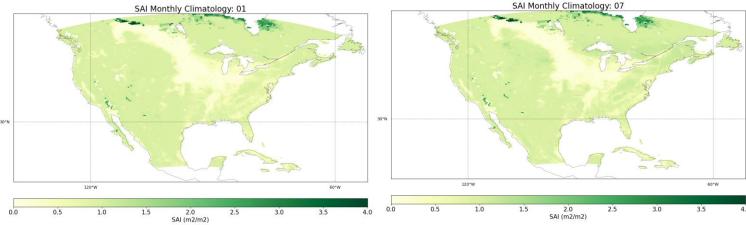
- NOAA LAI monthly climatology based on 10 years GLASS LAI.
- Reprocessed MODIS LAI (c6) which is temporal smoothed and gap filled by (Yuan, 2011)
- Results
 - Two datasets are both based on MODIS observations, so the consistency is good.
 - However, there are some difference need attention, such as Siberia southeast Asia and equator area, both datasets will be test in the Noah-MP model.
 - Model test show the positive impact of LAI on surface temperature.

The global LAI climatology difference (January and June) and mean LAI curve comparison over each latitude.




SAI and LAI in the Model

November 2024


- Background: in the land surface model, LAI is an important parameters for vegetation dynamics, meanwhiles, Stem Area Index (SAI) does not contribute to the photosynthesis but be critical in Energy Exchange, Interception.
- Current SAI in Noah-MP
 - Surface type dependent SAI.
- SAI derived from satellite observations.
 - Empirical method based on time series LAI (zeng, 2002)

- Ls: Plant Area Index (PAI), PAI=SAI+LAI
- Lgv: LAI in vegetated area only
- n: denote the nth month
- 1-α: denote the monthly removal rate (0-0.5), which is provided for each IGBP surface type.

USGS 27 land types: 1: Urban and Built-Up Land; 2: Dryland Cropland and Pasture 3: Irrigated Cropland and Pasture; 4: Mixed Dryland/Irrigated Cropland and Pasture 5: Cropland/Grassland Mosaic; 6: Cropland/Woodland Mosaic; 7: Grassland; 8: Shrubland; 9: Mixed Shrubland/Grassland; 10: Savanna; 11: Deciduous Broadleaf Forest; 12: Deciduous Needleleaf Forest; 13: Evergreen Broadleaf Forest; 14: Evergreen Needleleaf Forest; 15: Mixed Forest; 16: Water Bodies; 17: Herbaceous Wetland; 18: Wooded Wetland; 19: Barren or Sparsely Vegetated; 20: Herbaceous Tundra; 21: Wooded Tundra; 22: Mixed Tundra; 23: Bare Ground Tundra; 24: Snow or Ice; 25: Playa; 26: Lava; 27: White Sand

Task Category	Task/ Description	Start	Finish	Deliverable	Requirement (Dev Only)
Development (D)	Algorithm & product improvement according to the validation and model test.	7/1/2025	9/30/2025	Algorithm test report	JPSS LAI product requirements
Integration & Testing (I)	LAI operational data verification and adjustment	1/1/2025	3/31/2025		
Calibration &	LAI product in-situ validation & inter-comparison with other products	3/1/2025	6/30/2025	Validation report	
	Incorporate the LAI test data into the LSM model to evaluate the performance in the model	1/1/2025	9/30/2025	Model test report	
LTM & Anomaly Resolution (L)	Develop and apply LAI routine monitoring and validation tool	10/1/2024	05/31/2025	Monitoring tool package	

D	I	С	М	L
Development	Integration &Testing	Calibration & Validation	Maintenance	LTM & Anomaly Resolution

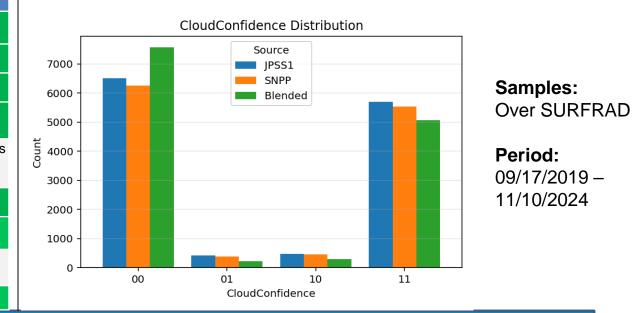
Surface Albedo

Accomplishments / Events:

- Verified the L3 VIIRS albedo from UAT by comparing it with local L3 albedo data in preparation for the ORR of VIIRS L3 albedo.
- Adapted the N21 VIIRS albedo for Long-Term Monitoring (LTM).
- Completed the ground validation of VIIRS blended albedo using data from three operational VIIRS sensors.
- Collaborated on global land surface anomaly monitoring efforts.

Milestones	Original Date	Forecast Date	Actual Completion	Variance Explanation
Share the soil albedo dataset with model users	Dec-2023	Dec-2023	Dec-2023	
Multi-parameter anomaly analysis report	Jan-2024	Jan-2024	Oct-2023	
Provisional maturity of NOAA-21 Albedo	Feb-2024	Jan-2024	Jan-2024	
VIIRS BRDF/Albedo/NBAR Dataset to User	Oct-2023	May-2024	Oct-2023	
BRDF evaluation (manuscript)	Dec-2023	Feb-2025		Need some contents of the integrated output
Enterprise Cal/Val Plan Initial Updates	Jun-2024	Jun-2024	Apr-2024	
*NCCF Integration of BRDF/BSA/WSA/NBAR	May-2024	Aug-2024		
Software package ready of blended SURFALB from all VIIRS sensors	Jun-2024	Dec-2024		
NOAA-21 validated maturity review	May-24	Sep-24	Jan-2024	

Overall Status:


	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

1. Project has completed.

- 2. Project is within budget, scope and on schedule.
- 3. Project has deviated slightly from the plan but should recover.
- 4. Project has fallen significantly behind schedule, and/or significantly over budget.

<u>Issues/Risks:</u>

Highlights: The blended albedo enhances clear-sky retrievals

Comparison between UAT LSA values and Local LSA values

NOAA-21 NOAA-20 S-NPP 20241116 VIIRS Albedo 1km 20241116 VIIRS Albedo 1km 20241116 VIIRS Albedo 1km 1200 600 1.0 1.0 1.0 Bias: 0.0001 Bias: 0.0005 Bias: -0.0005 Precision: 0.0102 Precision: 0.0192 Precision: 0.0111 800 1000 - 500 0.8 0.8 0.8 20241116 -800 -400 -600 0.6 0.6 0.6 Local Local Density - 300 Sensity ^{400 طَّ} 0.4 0.4 0.4 -400 -200 0.2 0.2 0.2 200 200 -100 0.0 0.0 0.0 0.0 0.2 0.6 0.8 1.0 1.0 0.0 0.8 1.0 0.4 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 20241117 VIIRS Albedo 1km 20241117 VIIRS Albedo 1km 20241117 VIIRS Albedo 1km 1.0 -1000 1.0 1.0 Bias: -0.0003 Bias: 0.0001 -1000 Bias: -0.0004 Precision: 0.0112 Precision: 0.0117 Precision: 0.0114 800 0.8 0.8 0.8 - 800 -800 20241117 -600 0.6 0.6 0.6 -600 -600 Local Density Density Local 0.4 0.4 0.4 400 400 -400 0.2 0.2 -200 200 -200

0.6

UAT

0.8

1.0

0.0

0.0

0.2

0.4

UAT

0.6

0.8

1.0

Jen C

0.2 0.0 0.0

0.2

0.4

UAT

0.6

0.8

1.0

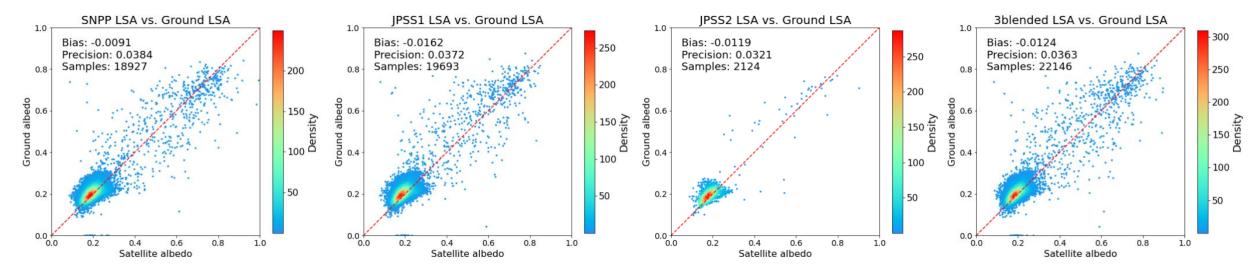
0.0 0.2 0.4

0.0

Comparison between UAT and Local L3 VIIRS_Albedo_1km

Satellite-Date	Bias	Precision	Fraction of pixels with abs(difference) > 0.02
J01-20241116	0.000	0.019	0.006
J01-20241117	0.000	0.012	0.002
J02-20241116	0.000	0.010	0.002
J02-20241117	-0.000	0.011	0.001
NPP-20241116	-0.001	0.011	0.003
NPP-20241117	-0.000	0.011	0.003

The table shows strong consistency between UAT and local L3 VIIRS Albedo values, with near-zero bias, high precision (0.010–0.019), and a low fraction of significant differences (< 0.006). These results confirm the reliability of UAT data across satellites and dates.

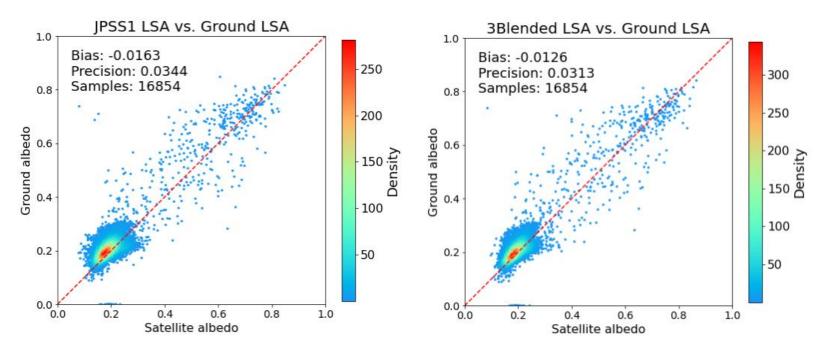

Comparison between UAT and Local L3 QualityFlag

Satellite-Date	Same 'QF' Fraction	Different 'QF' Fraction	Same 'Overall Quality' Fraction	Different 'Overall Quality' Fraction	Same 'Cloud Condition' Fraction	Different 'Cloud Condition' Fraction	Same 'LUT type' Fraction	Different 'LUT type' Fraction
J01-20241116	0.984	0.016	0.988	0.012	0.987	0.013	0.997	0.003
J01-20241117	0.999	0.001	1	0	0.999	0.001	1	0
J02-20241116	1	0	1	0	1	0	1	0
J02-20241117	0.997	0.003	0.999	0.001	0.997	0.003	1	0
NPP-20241116	0.998	0.002	0.998	0.002	0.998	0.002	1	0
NPP-20241117	0.998	0.002	0.998	0.002	0.998	0.002	1	0

This table demonstrates a high level of agreement between UAT and local L3 quality flags across satellites and dates. The 'Overall Quality,' 'Cloud Condition,' and 'LUT Type' are three components of the overall 'QF'. Key metrics, such as "Same 'QF' Fraction," "Same 'Overall Quality' Fraction," and "Same 'Cloud Condition' Fraction," consistently approach 1, with minimal differences observed.

The blended albedo enhances high-quality retrievals

Samples: Over SURFRAD and ARM SGP Period: 09/17/2019 – 11/30/2024


High-quality match-up number number during this period								
Satellite	SNPP	JPSS1	JPSS2	3-blended				
Samples	18,927	19,693	2,124	22,146				

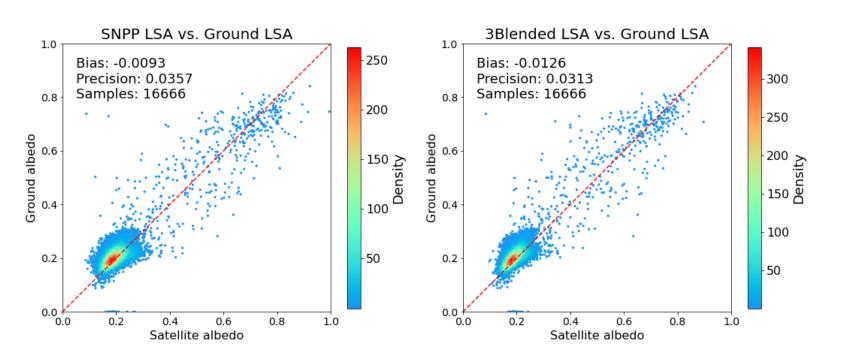
The **3-Blended Albedo** outperforms individual satellites with the highest number of samples (22,146) and a balanced bias of -0.0124 and precision of 0.0363. These results highlight the advantage of blending data from multiple satellites, enabling more comprehensive and high-quality clear-sky albedo retrievals.

The blended albedo improves product quality

Content: **Blended Albedo** vs. **JPSS1 Albedo** Samples: Over SURFRAD and ARM SGP sites Period: 09/17/2019 – 11/10/2024

(matched dates only for an apple-to-apple comparison)

Blended Albedo vs. JPSS1 Albedo


• Lower Bias: Smaller bias (-0.0126) compared to JPSS1 (-0.0163), closer to ground truth.

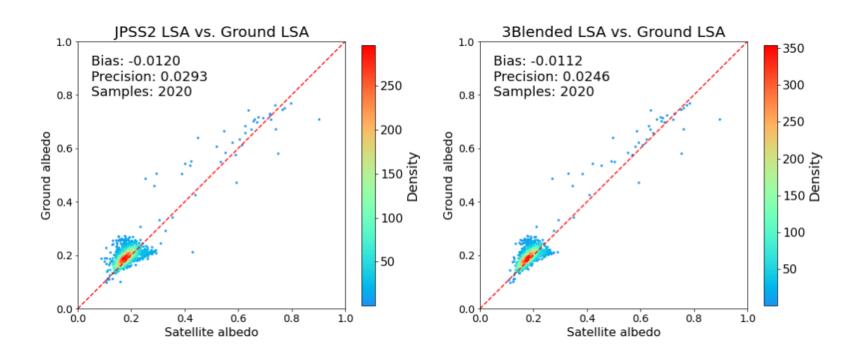
• **Higher Precision**: Reduced variability (0.0313 vs. 0.0344), leading to more reliable measurements.

• Better Consistency: Closer clustering along the 1:1 line, indicating more consistent measurements.

The blended albedo improves product quality

Content: **Blended Albedo** vs. **SNPP Albedo** Samples: Over SURFRAD and ARM SGP sites Period: 09/17/2019 – 11/10/2024 (*matched dates only for an apple-to-apple comparison*)

Blended Albedo vs. SNPP Albedo


• **Higher Precision**: Reduced variability (0.0313 vs. 0.0357), leading to more reliable measurements.

• Better Consistency: Closer clustering along the 1:1 line, indicating more consistent measurements.

The blended albedo improves product quality

Content: **Blended Albedo** vs. **JPSS2 Albedo** Samples: Over SURFRAD and ARM SGP sites Period: 09/17/2019 – 11/10/2024

(matched dates only for an apple-to-apple comparison)

Blended Albedo vs. JPSS2 Albedo

• Lower Bias: Smaller bias (-0.0112) compared to JPSS1 (-0.012), closer to ground truth.

• **Higher Precision**: Reduced variability (0.0246 vs. 0.0293), leading to more reliable measurements.

• Better Consistency: Closer clustering along the 1:1 line, and less scattered points.

FY25 Milestones/Deliverables

	Milestone	Start	Finish	Deliverable	Requireme nt (Dev Only)	Project
1	Software package for blended SURFALB from all VIIRS sensors	Oct-24	Dec-24	L3 code package for using observations from three satellites in generating blended albedo		JPSS-Albedo
2	Sea-ice albedo climatology dataset	Mar-25	Feb-25	VIIRS albedo climatology being updated over the sea-ice pixels and used in VIIRS albedo algorithm		JPSS-Albedo
3	Application of albedo in radiation force report	July-25	Sep-25	A manuscript, or a memorandum		JPSS-Albedo
4	LSA and other land anomaly monitoring interface	Oct-24	Jul-25	An interactive interface to observe the real-time albedo anomaly		JPSS-Albedo
5	BRDF algorithm based on the joint of NPP, JPSS-1, and JPSS-2	Jul-24	Dec-24	DAP: Software, documents, and test data		PPM-BRDF
6	Scientific report of Albedo/BRDF validation and monitoring	Sep-24	Jul-25	A report		PPM-BRDF

D	I	С	М	L
Development	Integration & Testing	Calibration & Validation	Maintenance	LTM & Anomaly Resolution

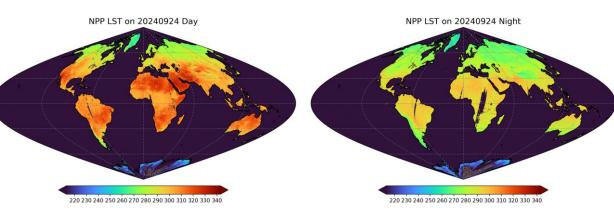
Land Surface Temperature

Accomplishments / Events:

- For all weather LST, direct mapping without relying on the projection conversion indices has proven effective. Software code issues such as incorrect attributes, incomplete data items, and double scaling of the LST value, have been resolved.
- Further testing of the all weather LST science code has been conducted and LST output has been verified through comparison with operational L3 VIIRS LST. The data layers are complete and all weather LST results are as expected. (highlight & slide 2)
- Three posters have been prepared for AGU 2024 including "Validation and Performance Evaluation of NOAA-21 VIIRS LST Product", "All-weather Land Surface Temperature (LST): Methodology and Experiment on JPSS/VIIRS LST", and "A Preliminary Evaluation of SNPP VIIRS LST Product with Landsat 8 Data" (slide 3-5)
- Conducted the overall ground validation of the all weather LST and the result has been included in the AGU Poster II.(slide 4)
- Ordered the VIIRS LST from CLASS and extended the time series analysis over UrbanNet stations. Summarized the results into slides. (Slide 6-7)
- Conducted latest ground validation for L2 NOAA-21 LST, also the same period for SNPP and NOAA-20 LST for performance comparison.(slide 3)
- Completed the L3 NOAA-21 data verification and summarized the results. Attended the L3 gridded LST ORR kickoff meetings. (slide 8-11)

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
N-21 LST data monitoring, consistency and performance evaluation	Oct-24	Dec-24		
L2 & L3 SNPP, NOAA-20 annual validation practice	Dec-24	Jan-25		
Support to JPSS-3 Data System Test Event	Jan-25	Apr-25		
I-band LST validation and applications	Oct-24	May-25		
All weather LST validation and improvement	Jan-24	Aug-25		
Monitoring and Anomaly watch, analysis and report	Oct-24	Sep-25		

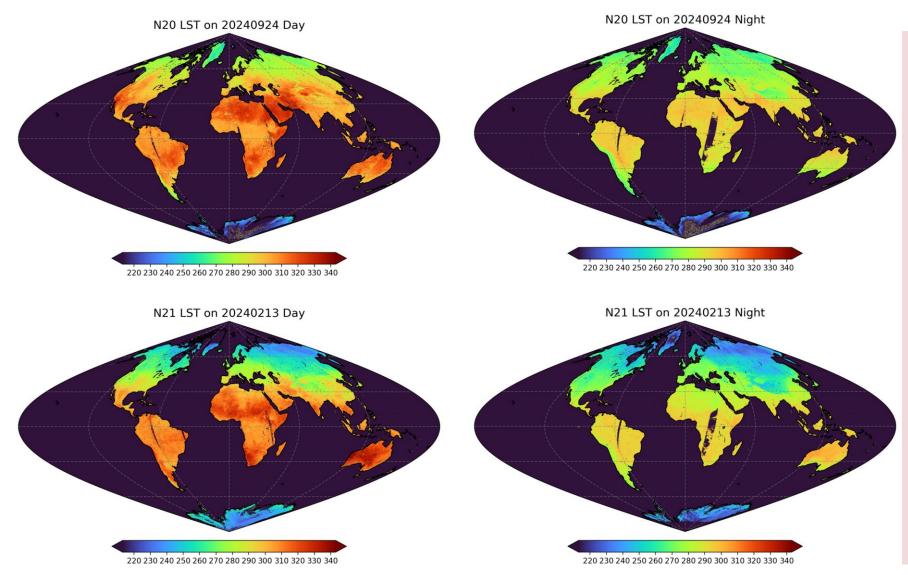
Overall Status:


	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic					
Schedule	х				

- 1. Project has completed.
- 2. Project is within budget, scope and on schedule.
- 3. Project has deviated slightly from the plan but should recover.
- 4. Project has fallen significantly behind schedule, and/or significantly over budget.

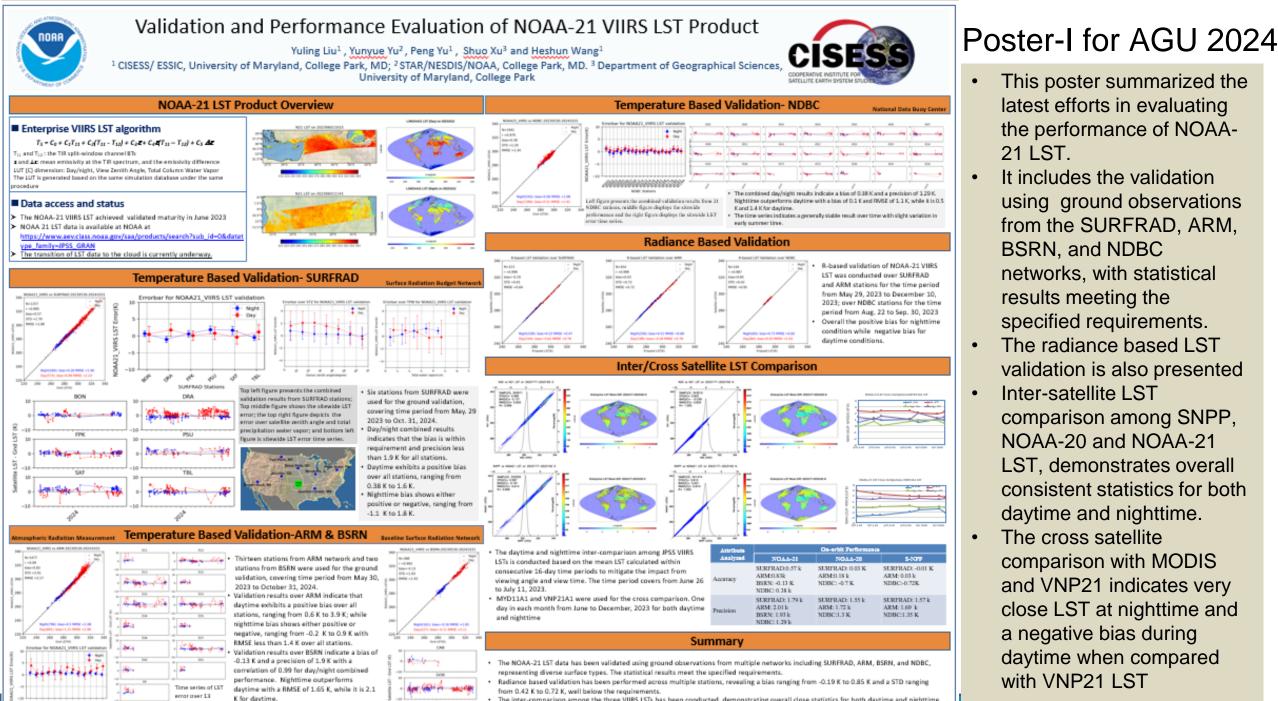
Issues/Risks:

None


Highlights: All weather SNPP VIIRS LST Sample Image

The all weather SNPP VIIRS LST in sinusoidal projection for daytime(left) and nighttime(right)

on

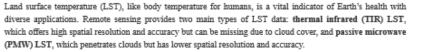

All weather LST Latest Test – NOAA-20 and NOAA-21

All weather LST code has been tested on all three satellites including SNPP, NOAA-20 and NOSS-21, for both daytime and nighttime.

•

- The all weather LST output is in the same projection as the operational L3 LST.
- The current version used the 1 km NDVI data as input.
- Visualization shows the LST value and distribution are in normal range

000000000000000


ARM stations

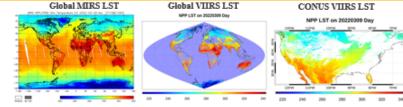
The inter-comparison among the three VIIRS LSTs has been conducted, demonstrating overall close statistics for both daytime and nighttime

All-weather Land Surface Temperature (LST): Methodology and Experiment on JPSS/VIIRS LST

Shuo Xu¹, Yuling Liu², Yunyue Yu³, Peng Yu² Department of Geographical Sciences, University of Maryland, College Park, MD, 20742, USA, ²Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA, ³NOAA/NESDIS/Center for Satellite Applications & Research (STAR), College Park, MD 20740, USA. E-mail: shuoxu98@terpmail.umd.edu

Both types of satellite-retrieved LST data are highly reliable. This study aims to fuse TIR and PMW LST data to produce high-quality, all-weather LST products essential for climate change research and various applications, utilizing daily L2 MIRS and L3 VIIRS LST along with ancillary data including NDVI, SRTM slope, SRTM elevation, and emissivity data.

MKF


completeness.

combines VIIRS LST. MIRS

LST, and various auxiliary

information to develop a NN model that generates

LST data with higher spatial

MIRS LST

The relatively low accuracy of the MIRS LST data constrains the accuracy of the fused LST data.

Many missing values in the VIIRS LST data, and the large spatial resolution difference between VIIRS and MIRS LST data, which can cause step discontinuities or excessive smoothness in the fused results

MIRS LST

Two fusion strategies are employed. The first method uses Cumulative Distribution Function (CDF) matching and Multiresolution Kalman Filtering (MKF), while the second method is based on Neural Networks (NN) algorithm.

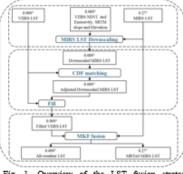
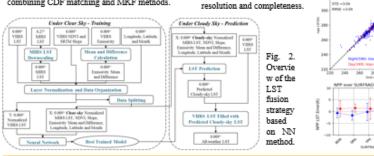



Fig. 1. Overview of the LST fusion strategy combining CDF matching and MKF methods.

80 8² - 0.000 800 - 0.000 800 - 0.000 downscaled PMW LST data TIR LST data. improving the quality of the PMW LST data. The approach further integrates these datasets to reduce their inconsistencies and improve their spatial The NN-based approach

Fig. 3. Validation results of LST generated by the fusion strategy combining CDF matching and MKF methods. The data spans January 1 to December 31, 2020, validated using six SURFRAD stations.

VIIRS LST

All-weather LST

Fig. 5. Validation results of LST generated by NN method. The data spans January 1-April 15 and 10-June 24. September 2024. validated using siz SURFRAD and five ARM stations

Fig. 4. Spatial distribution of LST generated by the fusion strategy combining CDF matching and MKF methods.

VIIRS LST

All-weather LST

Fig. 6. Spatial distribution of LST generated by NN method.

The all-weather LST offers high accuracy and complete data coverage, matching the high spatial resolution of VIIRS. It provides more complete data than VIIRS LST and surpasses MIRS LST in accuracy and spatial resolution, avoiding step discontinuities and excessive smoothing. It supports studies on urban heat islands, climate change, evapotranspiration, hydrology, and vegetation monitoring

Poster-II for AGU 2024

- This study aims to fuse TIR and PMW • LST data to produce high-quality, allweather LST products essential for climate change research and various applications, utilizing daily L2 MIRS and L3 VIIRS LST along with ancillary data including NDVI, SRTM slope, SRTM elevation, and emissivity data.
- Two fusion strategies are presented. The first method uses Cumulative Distribution Function (CDF) matching and Multiresolution Kalman Filtering (MKF), while the second method is based on Neural Networks (NN) algorithm.
- The preliminary validation of the all weather LST generated from above two methods have been presented.
- The all-weather LST offers high accuracy and complete data coverage, matching the high spatial resolution of VIIRS. It provides more complete data than VIIRS LST and surpasses MIRS LST in accuracy and spatial resolution, avoiding step discontinuities and excessive smoothing.

Xu, Shuo, and Jie Cheng, "A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering," Remote Sensing of Environment 254 (2021): 112256.

A Preliminary Evaluation of SNPP VIIRS Land Surface Temperature Product with Landsat 8 Data

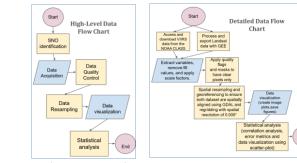
Chelsea Sun ¹ and Yuling Liu² ¹ Atholton High School, Columbia, MD, 21044 ² CISESS/UMD, College Park, MD 20740

ABSTRACT

Land surface temperature (LST) measures the Earth's surface temperature. It is a key parameter in controlling surface heat and water exchange with the atmosphere. LST data are also useful for monitoring crop and vegetation health, and urban heat island effects. An LST product is routinely generated at National Oceanic and Atmospheric Administration (NOAA) from Visible Infrared Imager Radiometer Suite (VIIRS), a polar-orbiting operational environmental sensor onboard Suomi National Polar-orbiting Partnership (SNPP) satellite for over a decade. In this study performed during my 2024 summer internship, the objective is to evaluate the VIIRS LST product with independent satellite retrievals from the Landsat-8 Collection 2 surface temperature product.

The SNPP VIIRS LST data were accessed and downloaded from the NOAA Comprehensive Large Arraydata Stewardship System (CLASS). The Landsat-8 LST product was exported from the Google Earth Engine platform using JavaScript, First, Simultaneous Nadir Overpass (SNO) between SNPP VIIRS and Landsat-8 were identified. SNOs with less cloud cover over land were selected. The associated LSTs were downloaded and quality controlled to include only clear-sky pixels. Next, the VIIRS and Landsat 8 data were resampled to common regular grids with a spatial resolution of 0.009° and matched spatially. Example comparisons were analyzed at 05:15 UTC for VIIRS and 05:18 UTC for Landsat 8 on May 25, 2024; and 06:57 UTC for both VIIRS and Landsat 8 on April 7, 2024. The image plots illustrated similar spatial patterns. The statistical analysis after resampling to common grids indicated a reasonable agreement between VIIRS and LandSat-8 LST.

DATA and METHODOLOGY


The SNPP VIIRS LST data is accessed and downloaded from the NOAA (CLASS):

The Landsat 8 LST product is exported from the Google Earth Engine (GEE) platform using JavaScript: b/c//code.earthengine.google.com/.

Apply quality control on both VIIRS and Landsat-8 to include only clear-sky pixels.

The Simultaneous Nadir Overpass (SNO) between SNPP VIIRS and Landsat 8 are identified.

Index	Date (LANDSAT-8)	Time (LANDSA T-8)	Lat,Lon (LANDSAT-8)	SZA (LANDSAT- 8)	Date (NPP)	Time (NPP)	Lat,Lon (NPP)	SZA (NPP)	Distance (km)	Time Diff (sec)
- 1	4/7/2024	6:57:00	70.08, 71.73	62.99	4/7/2024	6:57:34	70.08, 71.77	62.99	1.63	34
2	5/25/2024	5:18:01	70.57, 97.26	49.45	5/25/2024	5:16:50	70.66, 96.27	49.57	37.76	71

Re-grid the VIIRS and Landsat-8 LST data to the same grid

 Spatial resampling and georeferencing were performed to ensure both datasets are spatially aligned using the Geospatial Data Abstraction Library (GDAL).

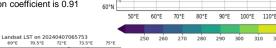
- Resample both data using the pyresample package in python to common regular grids with a spatial resolution of 0.009° and matched spatially.

- The nearest neighbor method is chosen to map the nearest cell value in the source grid to the target grid.

Perform data visualization, and statistical analysis on common gridded LSTs.

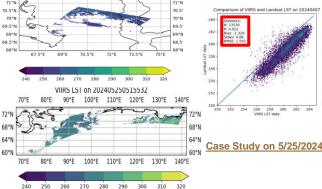
64°N

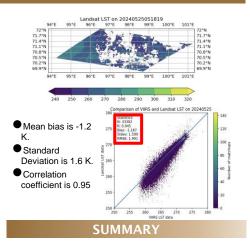
RESULTS and DISCUSSION


50°E 60°E

Case Study on 4/7/2024

67.5°E


Data Flow Chart

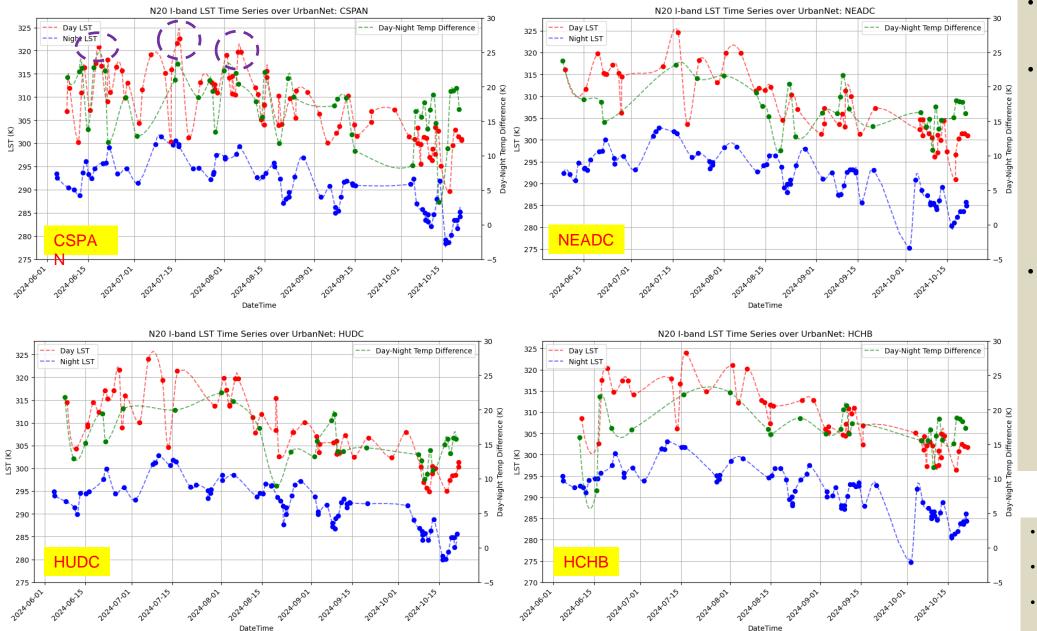

Mean bias is -1.3 K.
Standard Deviation is 0.9 K.
Correlation coefficient is 0.91

VIIRS LST on 202404070657364

70°E 80°E 90°E 100°E

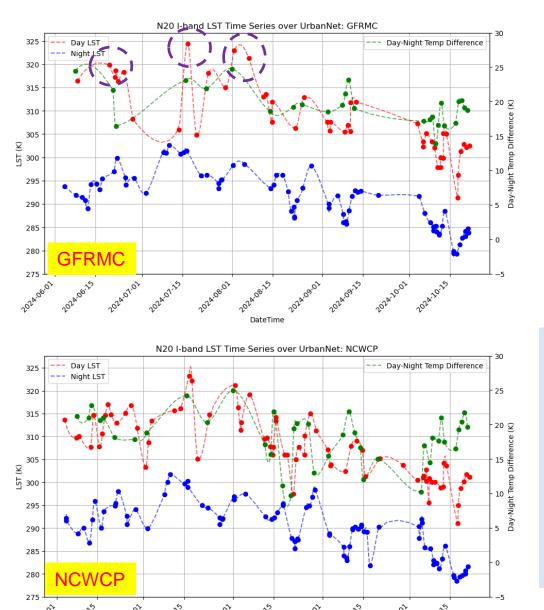
• Evaluated NOAA's operational SNPP VIIRS LST product and compared it with the independent satellite retrievals from Landsat-8 Level 2 LST product.

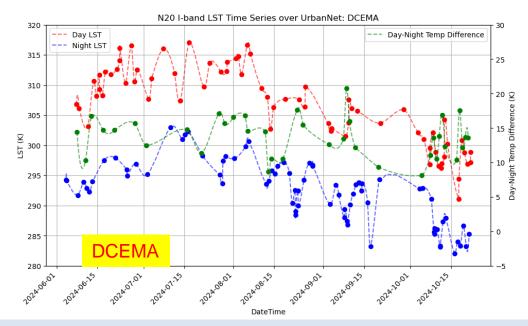
- The Simultaneous Nadir Overpass between SNPP VIIRS and Landsat-8 was identified for 4/7/2024 and 5/25/2024.
- The VIIRS and Landsat-8 data were downloaded, processed, and regridded to common regular grids and matched spatially.
- Statistical analysis demonstrates a reasonable agreement between VIIRS and Landsat LST, with a mean difference of ~ -1 K, a standard deviation within1.6 K, and a correlation coefficient larger than 0.9, indicating a strong correlation.
- This comparison result reflects the LST differences in high-latitude regions because the SNOs are primarily distributed in the high latitudes of the Northern and Southern Hemispheres, ~70°. The study can continue to compare the LST from more VIIRS and Landsat-8 SNOs to analyze different scenarios, such as different seasons as well as day or night conditions.

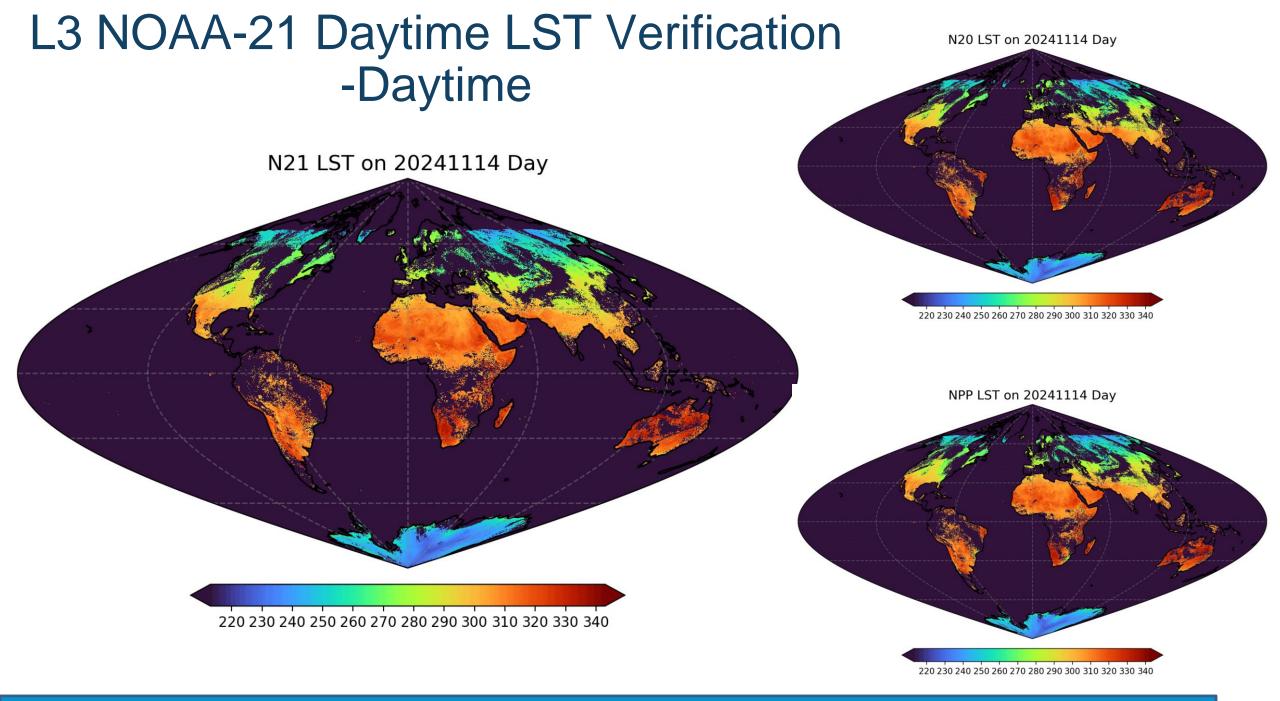

References

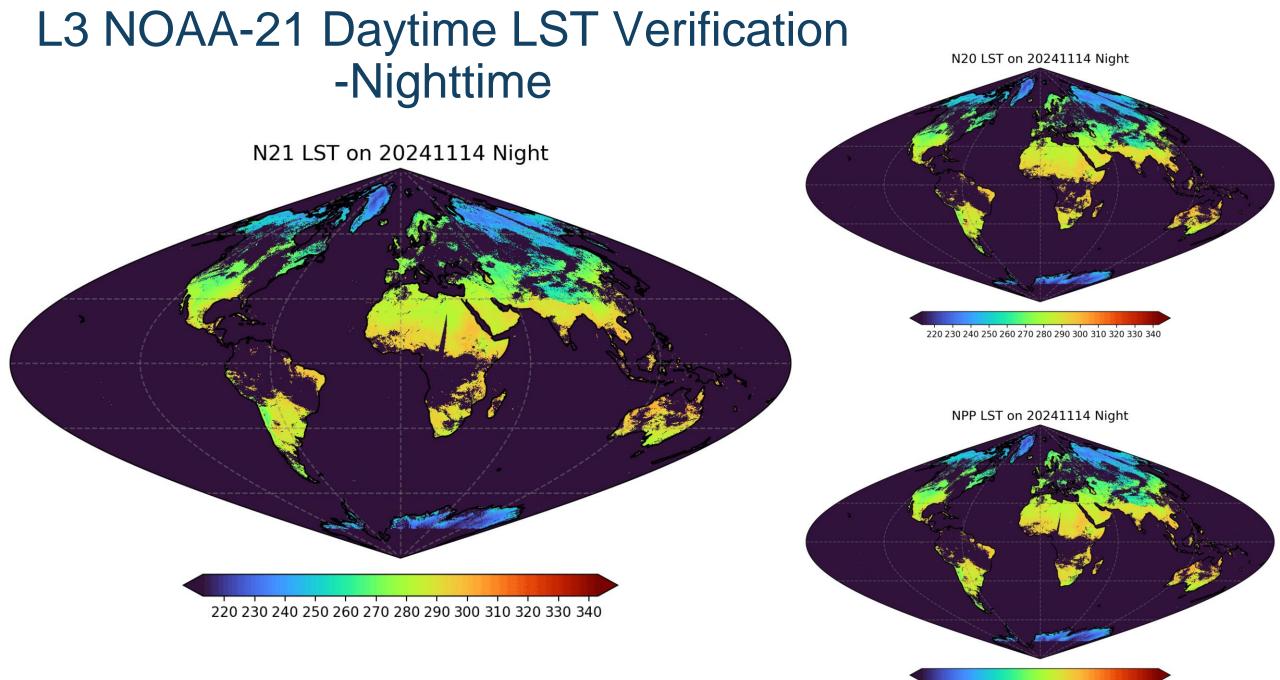
Liu, Y. et al., Ten Years of VIIRS Land Surface Temperature Product Validation.
 Remote Sens. 2022, 14(12), 2863; https://doi.org/10.3390/rs14122863.
 Liu, Y. et al., Quality Assessment of SNPP VIIRS Land Surface Temperature
 Product. Remote Sens. 2015, 7, 12215–12241
 3. VIIRS Land Surface Temperature Products Documentations
 (https://www.star.nesdis.noaagov/jpss/sls.tphp)
 4. Landsat 8-9 OL/TIRS Collection 2 Level 2 Data Format Control Book
 https://www.usgs.gov/media/Tiles/landsat-8-9-olitirs-collection-2-level-2-data-formatcontrol-book

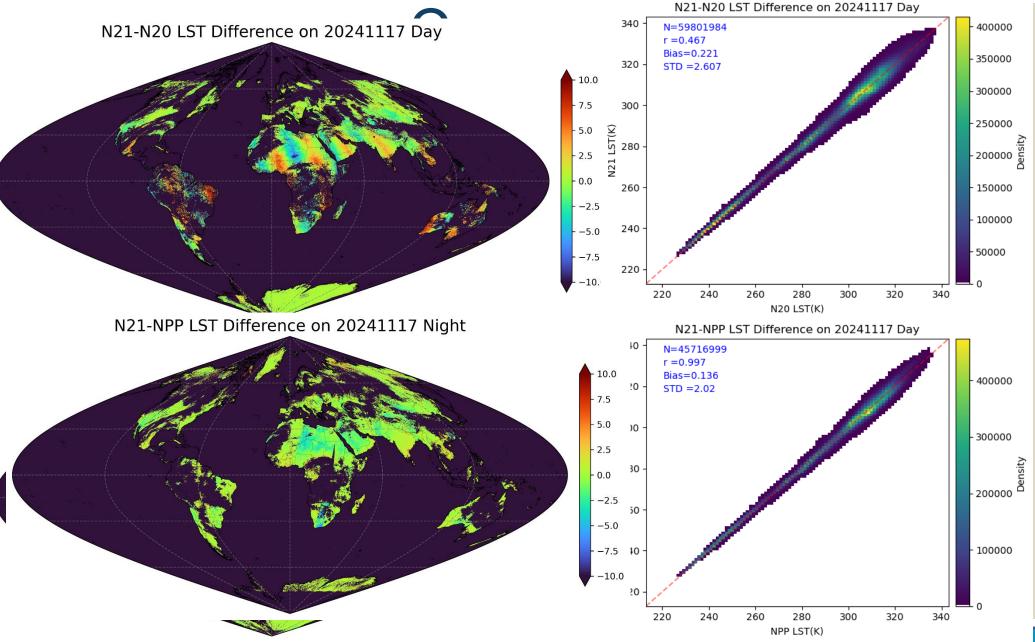
Poster-III for AGU 2024


- The SNPP VIIRS LST data were accessed with the independent satellite retrievals from Landsat-8 Level 2 LST product.
- Simultaneous Nadir Overpass
 (SNO) between SNPP VIIRS
 and Landsat-8 were identified.
 SNOs with less cloud cover
 over land were selected. The
 associated LSTs were quality
 controlled to include only clear-sky pixels.
- Statistical analysis demonstrates a reasonable agreement between VIIRS and Landsat LST, with a mean difference of ~ -1 K, a standard deviation within1.6 K, and a correlation coefficient larger than 0.9, indicating a strong correlation

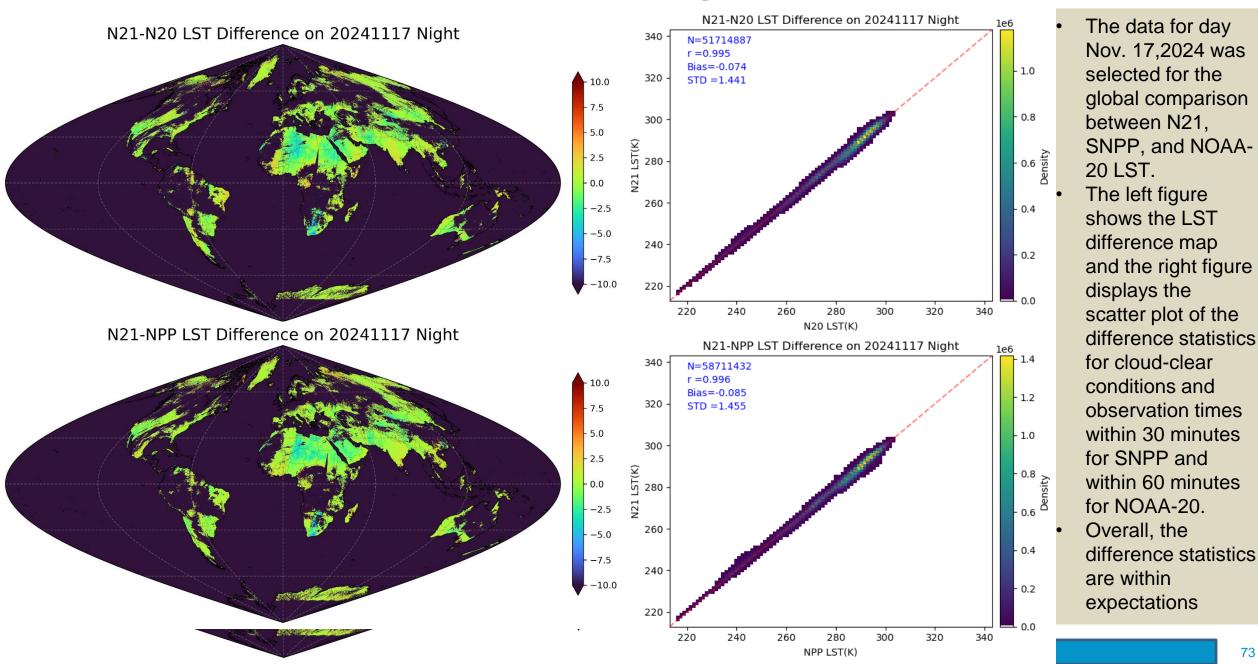

I-band VIIRS LST Time Series Over UrbanNet Stations


- The time series shows only cloud free LST estimates
 - The time series separates the daytime, nighttime and diurnal LST calculated as the difference between maximum daytime and minimum nighttime LST, for urban heat island effect analysis.
- It captures heat events in mid-June, mid-July and early August as marked in the circle, demonstrating the capability of the I-band LST to accurately capture extreme heat events.
- Red color shows the daytime LST time series
- Blue color shows the nighttime
 LST time series
- Green shows the diurnal temperature difference


I-band VIIRS LST Time Series Over UrbanNet Stations



- The I-band VIIRS LST has been applied to monitor heatwave occurrences over UrbanNet stations.
- The higher spatial resolution LST enables the detection of detailed heat features, offering enhanced insight into urban thermal dynamics.
- Time series were generated for seven stations from June 1, 2024 to October 22, 2024, revealing the occurrence of intense heatwaves at mid-June, mid-July and early August, demonstrating the capability of the I-band LST to accurately capture extreme heat events.
 - Blue color shows the nighttime LST time series
 - Green shows the diurnal temperature difference



Inter-comparison for Daytime LST

- The data for day Nov. 17,2024 was selected for the global comparison between N21, SNPP, and NOAA-20 LST. The left figure
- The left figure shows the LST difference map and the right figure displays the scatter plot of the difference statistics for cloud-clear conditions and observation times within 30 minutes for SNPP and within 60 minutes for NOAA-20.
- Overall, the difference statistics are within expectations

Inter-comparison for Nighttime LST

73

FY25 Milestones/Deliverables

	Milestone	Start	Finish	Deliverable	Requirement (Dev Only)
1	Annual report of L2 and L3 VIIRS LST validation	Nov-24	Dec-24	PowerPoint presentation of the validation results	
2	I-band LST LUT improvement and validation	Oct-24	May-25	Presentation slides of algorithm development and validation results	
3	LST reprocessing preparation	Ocr-24	Sep-25	Progress report	
4	JPSS-3 pre-launch test and evaluation	Jan-25	Apr-25	Presentation slides and LUT (rely on the availability of the sensor response function)	
5	All weather LST scientific readiness and availability	Oct-24	Aug-25	Experimental data and evaluation results	Collaborative works with PPM and EMC
6	Monitoring and Anomaly watch, analysis and report	Oct-24	Sep-25	Report as the cases come up	

D	I	С	М	L
Development	Integration & Testing	Calibration & Validation	Maintenance	LTM & Anomaly Resolution

MiRS Products

Accomplishments / Events:

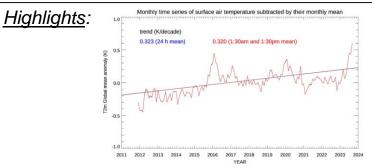
In a recently published paper "Trends of temperature and total precipitable water, as well as the trend of surface pressure induced by CO₂", led by NOAA/STAR scientist Quanhua (Mark) Liu, and coauthored by both CISESS scientists Yan Zhou, Chris Grassotti, Yong-Keun Lee, and John Xun Yang, as well as CIRA scientist Shuyan Liu, the researchers analyzed trends in atmospheric water vapor (total precipitable water), surface air temperature, and surface pressure from ERA5 reaanalysis data. The work, published in the Nature open access journal Scientific Reports, analyzed long-term trends in all three variables during the period 2012 – 2024. The analysis yielded several important results: (1) positive trends in total precipitable water and 2-meter air temperature during this period were 0.227 mm and 0.332 K per decade, respectively; (2) an increase in CO₂ concentration during the period of analysis contributes to an increase of roughly 0.037 hPa per decade in surface pressure, which represents 57% of the total surface pressure trend; and (3) global trends based on using ERA5 hourly analyses and trends based only on analyses near 1:30 am and 1:30 pm local times are nearly identical. This last result is important as it indicates that well-calibrated satellite observations from a single polar orbiting satellite, such as NOAA-21 ATMS, which observes most locations only twice daily may be sufficient for accurately determining trends in climate-sensitive variables such as water vapor and temperature. DOI: https://doi.org/10.1038/s41598-024-80685-8

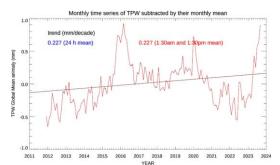
Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
MiRS Development Algorithm Package (DAP) version 12.0 delivery	Oct 2024 to Sep 2025			
MiRS EDRs Reprocessing and data analysis	Oct 2024 to Sep 2025			
MiRS EDRs Maintenance and Monitoring	Oct 2024 to Sep 2025			
Implementing new CRTM version into MiRS System	Sep 2025			
Develop and evaluate AI/ML MiRS post-processing for precipitation over CONUS and global SST retrieval improvement	Sep 2025			
Framework for MiRS JPSS-3/4 ATMS	Sep 2025			

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget	х				
Technical / Programmatic	х				
Schedule	х				

1. Project has completed.


2. Project is within budget, scope and on schedule.


3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

None

Time series of global monthly anomalies of 2-meter air temperature (top) and TPW (bottom) derived from ERA5 analyses. The straight lines are the linear trends derived from the monthly anomalies. Anomalies and trends are shown for global means based on 1:30 am/1:30 pm local time data only (red) and all hourly data (black). The anomalies and trends for both data sets are so similar that the black curves are almost obscured by the red curves. Computed annual trend values for both 24-hour and 1:30 am/pm data are shown in blue and red, respectively.

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: MiRS Development Algorithm Package (DAP) version 12.0 delivery	October 2024 to September 2025			
Subtask 1.1: Preparation of the MiRS DAP 12.0 Two key updates: 1) upgrade the CRTM version 2.1.1 to the latest 2.4.0 in the MiRS DAP; The CRTM version 2.1.1 was released 10 years ago. New sciences and new capabilities have been implemented in the version 2.4.0. 2) Some' values are stored as integer values in the MiRS EDRs files for saving the storage space and users read the files and converted back to floating values. The process caused the loss of numerical precision that affects the trend study in climate change. Today's data storage is much powerful than previous so that we can directly store the floating values.	October 2024 to July 2025			
Subtask 1.2: The DAP testing and delivery	October 2024 to September 2025			
Task 2: MiRS EDRs Reprocessing and data analysis	October 2024 to September 2025			
Subtask 2.1: Data Reprocessing SNPP MiRS EDRs data are reprocessed till December 2021 and NOAA-20 MiRS EDRs data are reprocessed till December 2020. The team will reprocess the NOAA-18 MiRS EDRs data	October 2024 to July 2025			
Subtask 2.2: Reprocessed Data Analysis The MiRS reprocessed EDRs provided consistent long data records for study climate changes. The MiRS team will analyze the trends of total precipitable water (TPW) and rain rate at the surface.	October 2024 to September 2025			
Task 3: MiRS EDRs Maintenance and Monitoring	October 2024 to September 2025			
Subtask 3.1: Maintenance MiRS team is responsible for debug and upgrades of the MiRS system. The team is response for any issues reported by OSPO, Community Satellite Processing Package (CSPP) and other users.	October 2024 to September 2025			
Subtask 3.2: Monitoring The MiRS team maintains a visualization system to display daily images of global and CONUS distributions of MiRS 11 EDRs. The system also displays time series of statistical errors (biases and standard deviations) those EDRs.	October 2024 to September 2025			

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 4: Implementing new CRTM version into MiRS System	September 2025			
Subtask 4.1: Implementation The MiRS system currently uses the CRTM version 2.1.1 forward operator in its physical retrievals. The CRTM version was released 10 years ago. The newly released CRTM version 2.4.0 includes the new science improvement. However, the CRTM version doesn't have the jacobian for the surface emissity which is specific component for the MiRS. The team will add the specific part to the CRTM for the MiRS.	July 2025			
Subtask 4.2: Testing and Assessment of the Performance After the implementation of the CRTM new version, the team will test and evaluate the performance of the new implementation in terms of the accuracy and efficiency.	September 2025			
<i>Task 5:</i> Develop and evaluate AI/ML MiRS post-processing for precipitation over CONUS and global SST retrieval improvement	September 2025			
Subtask 5.1: Develop AI/ML MiRS post-processing AI/ML algorithm can greatly improve the accuracy of MiRS EDRs. For a low cost, we first proposed AI/ML post-processing system without changing MiRS. The MiRS EDRs will be inputs to a deep- learning system to improve the accuracy of EDRs.	July 2025			
Subtask 5.2: Demonstrate the improvement for precipitation and sea surface temperature The AI/ML MiRS post-processing system will be evaluated the improvements for two candidate EDRs: surface rain rates and the sea surface temperatures.	September 2025			
<i>Task 6:</i> Framework for MiRS JPSS-3/4 ATMS MiRS is an enterprise algorithm. However, the bias correction and tuning still exist deficiency. The MiRS applies the bias correction over oceans to both lands and oceans. Over land, snow and ice surfaces, the bias correction is very challenge because of large uncertainties in the surface emissivity models. The new framework <i>aims to overcome the difficulties.</i>	September 2025			

NOAA Products Validation System (NPROVS) and JSTAR Mapper/STEMS

November 2024

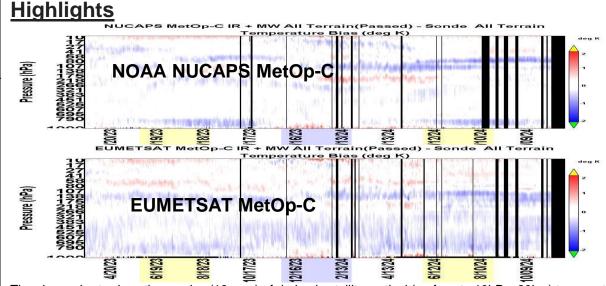
Accomplishments / Events:

- JSTAR Mapper / STEMS staff updated the product description file to include NOAA-21 imagery, as well as new debugging image sets and worked with the NUCAPs and MIRS science teams in order to fix existing image production bugs in those product lines.
- NPROVS staff (Reale, Sun) attended (virtual) a 2-day Workshop on EUMETSAT Polar System Second Generation ((EPS-SG) and NOAA collaboration to provide observations for Climate Monitoring and Numerical Weather Prediction; EPS-SG data integration and Cal/Val assessments using NPROVS is planned (HIGHLIGHT)
- The field distribution of FY24 radiosondes (320) at four (4) DOE ARM sites in support of the JPSS / DOE Dedicated (satellite synchronized) Radiosonde Program is now underway; plans to pursue FY25 funding request (\$35K) to provide dedicated radiosondes in coordination with an upcoming NOAA AEROSE campaign (May-2025) is awaiting final approval from the Financial Management Branch.

Milestones		Forecast Date	Actual Completion Date	Variance Explanation
Restore high-resolution conventional radiosonde observations in NPROVS	Q2	Q2		
JSTAR mapper evolution to STEMS	Q4	Q4		
Dedicated Radiosonde Programs: 1) DOE/ARM and new BNF site in Alabama, 2) AEROSE 2025 campaign support	Q3	Q3		
NUCAPS 1) routine monitoring and 2) severe weather case studies	Q4	Q4		

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

1. Project has completed.


Overall Status:

2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks: None

The above charts show time-series (18 mos) of derived satellite vertical (surface to 10hPa; 30km) temperature bias from Operational NOAA-NUCAPS (top) and EUMETSAT (bottom) product suites for MetOp-C. Shown are daily averaged SAT-Raob differences baselined to collocated conventional radiosonde and satellite observations routinely compiled by NPROVS; the color scales are +/- 2K (white is within 0.5K) and the vertical scale is 32km. Although overall compatible, results show differences and along with the collocation datasets are of interest for tracking the relative performance future MetOp-SG sounding products from each agency.

NUCAPS Products

- Performed user assessment studies in support to the NOAA-21 CrIS SDR calibration artifact (ADR-10909). Evaluated NOAA-21 %accepted (yield) retrievals with NOAA-20 for (1) A focus day with CrIS calibration artifact is at its peak, (2) A normal day where there is no CrIS calibration artifact. Observed degradation in the (a) NOAA-21 retrieval yield, (b) AVTP and AVMP retrieval statistics over the Antarctica appeared to be caused by the CrIS calibration error.
- Continued validation and sustainment activities for all the NUCAPS EDR products. These include collection
 and processing of validation data sets for AVTP, AVMP, O3, OLR, CO, CH4, and CO2.
- Continued the AWS trial of cloud-based NUCAPS product reprocessing. Evaluated NOAA-20/21 AWS NUCAPS retrieval products with the offline focus day datasets as a sanity check in moving forward for S-NPP mission long reprocessing plans.
- Continued the NUCAPS carbon trace gases validations based on the newest TCCON datasets for both NOAA-20/NOAA-21.
- Continued AVTP/AVMP VALAR RAOBs at different GRUAN sites of ENA, NSA, SGP and LIN.
- Progressed on MetOp-B cloudy and clear regression updates removing AMSU-A channels. Results of evaluation show favorable results. Patch delivery plans are in progress.

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
DAP Delivery with updates related damping factor, surface corrections, MetOp-B/C Averaging Kernels	Oct-22	Oct-22	11/04/22	
NOAA-21 Ready NUCAPS product evaluations with the upcoming CrIS first light data and ATMS TDRs, and user support for the CrIS Beta Maturity Review	Feb-23	Feb-23		NOAA-21 K-band transmitter swap
NOAA-21 NUCAPS Product Beta Maturity	May-23	May-23	6/1/23	Beta attained effective 3/23
NOAA-21 NUCAPST(p), q(p), O3(p), OLR, CO, CH4 and CO2 Provisional Maturity	Nov-23	Dec-23	Jan-24	Attained Validated Maturty
Implementing Validation Archive (VALAR) and focus-day data collections for NOAA-21 NUCAPS product validations	May-23	May-23	Mar-24	Continued updates to the data set
Addition of CAMEL emissivity database for the emissivity first guess	Mar-24	Jul-24	Delayed Expected in Jan-25	On-going Delayed due to other operational priorities
Mission-long reprocessing of NOAA-21 NUCAPS products: Reprocessing version and evaluation of reprocessed products	Jun-24	Jul-24	Delayed Expected Dec- 24	Pilot-Study in Near Completion

Overall	Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		х			

Project has completed.

Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

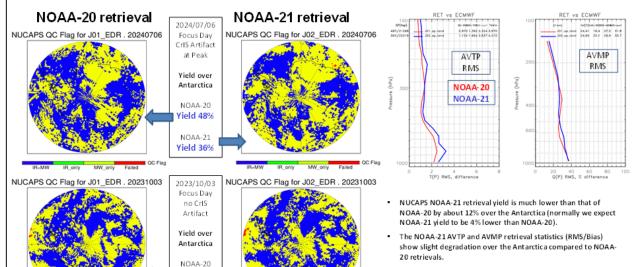
/ield 50%

NOAA-21 Yield 52%

IB+MW

IR only

4. Project has fallen significantly behind schedule, and/or significantly over budget.


Issues/Risks:

None

IB only

MW only Failed

NOAA-21 CrIS Artifact Error Impact on NUCAPS Retrieval

MW only Failed

 Observed degradation in the (a) NOAA-21 retrieval yield, (b) AVTP and AVMP retrieval statistics over the Antarctica are probably caused by the CrIS calibration error

FY25 Milestones/Deliverables

Path Forward ~ High priority tasks/milestones

NOAA		_			
	Milestones	Туре	Original Date	Forecast Date	Variance Explanation
Task 1	Routine and reactive maintenance support for the NUCAPS JPSS (NOAA-20/21) and MetOp (C/B) series enterprise version (HEAP4.0)*	R&D, I&T, CV	Sep-25		
	Subtask 1.1 Generation of MetOp-B cloudy and clear regression updates removing faulty AMSU-A channels		Oct-24	Dec-24	Regression updates appears to work alright. However, requires additional patches for AMSU Brightness temperature adjustments.
Task 2	Intensive validation activities using a collection of a hierarchy of validation data sets, processing and intensive validation activities are planned for all of the NUCAPS products (AVTP, AVMP, O3, CO, CO2, CH4, and OLR). Validation of algorithm updates and improvements	R&D, I&T, CV	Sep-25		Ongoing and on-time
	Subtask 2.1 Continued generation of matched data sets, NUCAPS product generation and validation with collocated data sets to evaluate product performance over different seasons and regions.	R&D, I&T, CV	Mar-25		
	Subtask 2.2 Algorithm improvements and operational feasibility/implementation of new products	R&D, I&T, CV	Jun-25		
	Subtask 2.3 Coordination and collaboration with NOAA – GML (Theme 1 & 2) validation activities; Support for Greenhouse Gases (GHG) initiatives; Environmental events	R&D, I&T, CV	Jun-25		
	Subtask 2.4: Validation of NUCAPS products with Single Field-of-view Sounding Atmospheric Product (SIFSAP, LaRC) and matched RAOB measurements	R&D, I&T, CV	Sep-25		
Task 3	Mission-long reprocessing of NUCAPS EDR products	R&D, I&T, CV	Mar-25		Ongoing
	Subtask 3.1 Pilot study on NCIS reprocessing of NUCAPS EDRs		Oct-24	Dec-24	Verified NOAA-20/21 AWS runs with offline runs and found them good. Working on S-NPP focus day evaluations.
	Subtask 3.2 Mission-long S-NPP NUCAPS product reprocessing using reprocessed SDRs and with NUCAPS HEAP 4.0 followed by NOAA-20.	R&D, I&T, CV	Mar-25		Delays due to AWS team funding, and due to contract discontinuity for a month that has ripple effects
	Subtask 3.3 Mini-validation review of reprocessed NUCAPS	R&D, I&T, CV	Apr-25		
	products NOAA JF	SS Program Office N	Ionthly • OFFICIAL L	ISE ONLY	3

Ocean Color

Accomplishments / Events:

- A Scientific Paper Published in Frontiers in Marine Science: Michael Ondrusek, Lide Jiang, and Menghua Wang from the OC team are coauthors of a recent paper published in *Frontiers in Marine Science*, Gilerson et al., "Development of VIIRS-OLCI chlorophyll-a product for the coastal estuaries," *Front. Mar. Sci.*, **11**, 1476425, 2024. <u>https://doi.org/10.3389/fmars.2024.1476425</u>
- Worked on system vicarious calibrations for three VIIRS sensors.
- Continue working on the mission-long VIIRS ocean color data reprocessing using the MSL12 ocean color data processing system.
- Routinely producing VIIRS (SNPP, NOAA-20, and NOAA-21) true color/false color images in OCView.
- Producing global VIIRS (SNPP, NOAA-20, and NOAA-21) ocean color products and showing in OCView routinely :

https://www.star.nesdis.noaa.gov/socd/mecb/color/index.php

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		х			

- 1. Project has completed.
- 2. Project is within budget, scope and on schedule.
- 3. Project has deviated slightly from the plan but should recover.
- 4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks: None

Ocean Color FY25 Milestones/Deliverables

Task/Milestone	Planned Completion Date	Fiscal Quarter	Comments
NOAA-21 OC data processing			
NOAA-21 OC EDR Cal/Val evaluations using refreshed/new MOBY data	Sep-25	Q4 FY25	
VIIRS calibration/validation			
Continue VIIRS Cal/Val data analysis (SNPP, NOAA-20, and NOAA-21) (using new MOBY data)	Sep-25	Q4 FY25	
Cal/Val team complete the 10th VIIRS ocean color dedicated cruise	Aug-25	Q4 FY25	
In situ data collections from OC Cal/Val team including NOAA dedicated cruise and other opportunities, particularly for NOAA-21 OC validation	Aug-25	Q4 FY25	
VIIRS algorithm refinement (Maintenance DAP)			
Improvement of the OCView tool for routine global VIIRS true color & OC products monitoring	Aug-25	Q4 FY25	
Continue working on improvement of the ocean color data processing system (MSL12), particularly over global coastal and inland water regions	Sep-25	Q4 FY25	
VIIRS OC data processing/reprocessing			
Mission-long OC data reprocessing for VIIRS-SNPP	Sep-25	Q4 FY25	
Mission-long OC data reprocessing for VIIRS-NOAA-20	Sep-25	Q4 FY25	
Mission-long OC data reprocessing for VIIRS-NOAA-21 (depending on evaluation results from refreshed MOBY data)	Sep-25	Q4 FY25	
Producing consistent VIIRS SNPP, NOAA-20, and NOAA-21 OC products from reprocessed OC data	Sep-25	Q4 FY25	
Updated DAP (MSL12) to CoastWatch, if needed	Sep-25	Q4 FY25	

OMPS SDR

Accomplishments / Events:

- Derived and delivered OMPS weekly dark LUTs for 3 NPs and NMs.
- Derived and delivered OMPS solar bi-weekly LUTs for 3 NPs.
- Continued the ADR 10832 for OMPS NP sensor degradation analysis.
- Conducted an intensive analysis for JPSS-04 OMPS NM and NP pre-launch calibration data sets (goniometry coefficients., bandpass, point spread function stray light feature, dark, etc.)
- Initialized the J3 OMPS NM and NP sensor pre-launch characterization analysis report outline by adding contents.
- Continued the development of a system to quickly update Dark Calibration LUTs following spacecraft anomaly events.
- Updated and extended TROPOMI and OMPS NM inter-sensor comparisons originally in support to the EUMET-STAR workshop.

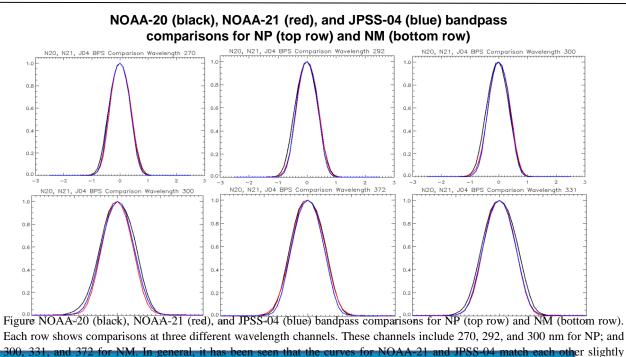
Milestones	Original Date	Actual Completion Date	Variance Explanation
Update OMPS SDR calibration plan for JPSS-04 OMPS SDR	Oct-24	Oct-24	
Complete the solar activity adjustment analysis for SNPP, NOAA-20 and NOAA-21 OMPS NP (part of DR10832)	Dec-24	Dec-24	
Complete beta version of JPSS-04 OMPS nadir sensor pre-launch characterization analysis report	Jan-25		
Identify impacts of J4 OMPS NM wavelength range change on OMPS calibration/validation analyses	Mar-25		
Complete the degradation analysis for SNPP, NOAA-20 OMPS NP (part of DR10832)	Apr-25		
Develop various proxy calibration coefficient LUTs to support JPSS-3/4 OMPS NM SDR processing with a new wavelength range from 380 to 439nm	Jun-25		
Establish an off-line OMPS SDR processing package in order to meet new requirements from EDR in retrieving NO2 in future JPSS-03 and JPSS-04 missions (NM wavelength range: from 300-380 nm to 300-430nm)	Sept-25		
Complete beta version of JPSS-03 OMPS nadir sensor pre-launch characterization analysis report	Sep-25		
Initialize a calibration algorithm structure for solar radiometric calibration in support of JPSS-04 mission	Sept-25		
Support CRTM-VLIDORT project for OMPS radiance simulations	Sep-25		
Derive and deliver weekly/bi-weekly updates of OMPS NM/NP dark and solar calibration tables for SNPP, NOAA-20, and NOAA-21 OMPS SDR data	Sep-25		
SNPP/NOAA-20/NOAA-21 recovery assessment and LUT deliveries	OAA JPSS	Program O	ifice Month

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule			х		

1. Project has completed.

2. Project is within budget, scope and on schedule.


Vbetter than those from NOAA-20, which tend to be wider.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

None

Began examination of JPSS-04 OMPS NM PSF data and values. The JPSS-04 NM PSF data was available for 8 wavelengths and 9 azimuthal angles, for a total of 72 images. This is a larger set than what was available for NOAA-21 NM, which contained 6 wavelengths at 9 azimuthal angles. The extra wavelength channels for the JPSS-04 data were at 427 and 435 nm, beyond the range of what was available for NOAA-21. These extended wavelength channels should help analyzing out-of-range when stray light. Examples of the available PSF data can be seen in Figure.

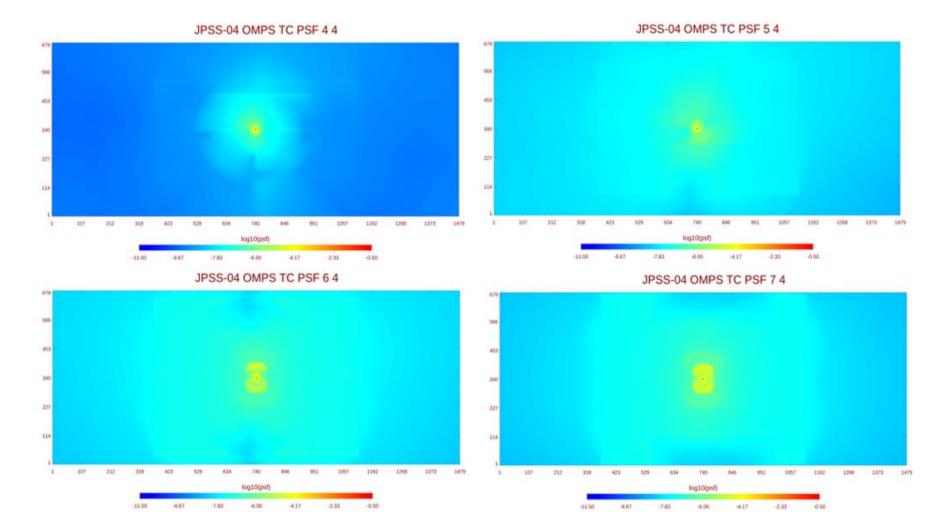


Figure JPSS-04 OMPS NM Point Spread Function (PSF) images for four different wavelength channels at the same azimuthal angle. The images in the bottom row are at wavelengths that are beyond what was available for NOAA-21. These additional wavelengths will help when analyzing out-of-range stray light.

FY25 OMPS SDR Milestones/Deliverables

	Milestone	Start	Finish	Deliverable
1	Complete the JPSS-4 OMPS SDR calibration plan	Sep-24	Oct-24	JPSS-4 OMPS SDR calibration plan
2	Complete the solar activity adjustment analysis for SNPP, NOAA-20 and NOAA-21 OMPS NP (part of DR10832)	Jun-24	Dec-24	Software; new OSL tables; reprocessed OMPS NP SDR test data sets;
3	Complete beta version of JPSS-04 OMPS nadir sensor pre-launch characterization analysis report	Sep-24	Jan-25	JPSS-04 OMPS nadir sensor pre-launch characterization analysis report
4	Identify impacts of J4 OMPS NM wavelength range change on OMPS calibration/validation analyses	Jan-25	Feb-25	Provide information to the delta review for J4 OMPS SDR algorithm
5	Complete the degradation analysis for SNPP, NOAA-20 OMPS NP (part of DR10832) and NM (a new DR is needed)	Dec-24	Apr-25	New solar wavelength and flux tables; reprocessed test data sets for OMPS EDR team
6	Develop various proxy calibration coefficient LUTs to support JPSS-3/4 OMPS NM SDR processing with a new wavelength range from 380 to 439nm	Jan-25	Jun-25	Various proxy calibration coefficient LUTs for JPSS- 03/04 OMPS NMs; various proxy calibration coefficient LUTs for SNPP, NOAA-20 NMs (code compliance)
7	Establish an off-line OMPS SDR processing package in order to meet new requirements from EDR in retrieving NO2 in future JPSS-03 and JPSS-04 missions (NM wavelength range: from 300-380 nm to 300-430nm)	Feb-25	Sept-25	An off-line OMPS SDR processing package applicable for future JPSS-03 and JPSS-04; ADL code change package for operational processing
8	Complete beta version of JPSS-03 OMPS nadir sensor pre-launch characterization analysis report	Jun-25	Sep-25	JPSS-03 OMPS nadir sensor pre-launch characterization analysis report
9	Initialize a calibration algorithm structure for solar radiometric calibration in support of JPSS-04 mission	May-25	Sept-25	Diagram draft for converting solar radiometric counts to solar flux
10	Support CRTM-VLIDORT project for OMPS radiance simulations	Oct-24	Sep-25	Test results
11	Derive and deliver weekly/bi-weekly updates of OMPS NM/NP dark and solar calibration tables for SNPP, NOAA-20, and NOAA-21 OMPS SDR data	Oct-24	Sep-25	Dark, solar SOL LUTs
12	SNPP/NOAA-20/NOAA-21 recovery assessment and LUT deliveries	Oct-24	Sep-25	Dark, solar SOL LUTs

		_				_	
	D	I	С	М	L		1
NOAA JPSS Program Office Monthly	Development	Integration &Testing	Calibration & Validation	Maintenance	LTM & Anomaly Resolution		85

OMPS Ozone (V8Pro, V2Limb & V8TOz)

November 2024

Accomplishments / Events:

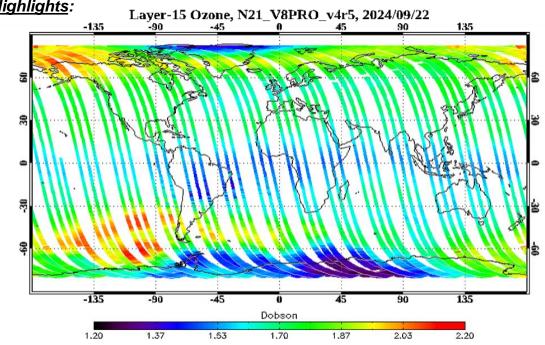
Report on the Ozone Mapping and Profiler Suite (OMPS) Validated Maturity **Review.**

The validated maturity review briefing for the Version 8 Ozone Profile Retrieval Algorithm (V8Pro) EDRs was successfully held on November 21, 2024. The latest delivery for the soft calibration adjustment table brings the performance of the NOAA-21 V8Pro ozone profile EDRs to within $\pm 5\%$ of the corresponding results for NOAA-20 and S-NPP globally. The presentation and readme memo will be available at https://www.star.nesdis.noaa.gov/jpss/AlgorithmMaturity.php.

Milestones	Original / Current Date	Forecast Date	Actual Completio n Date	Variance Explanation

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		Х			
Technical / Programmatic		Х			
Schedule			х		ProTech Follow-on, SDR instability, Limb Development


1. Project has completed. 2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks: IMSG ProTech Contract follow-on Is still not in place.

Highlights:

False color image of the ozone profiles for a layer at 1 hPa for the three satellites for September 22, 2024.

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: Construct, improve and deliver tables and codes, and perform validation studies. Provide presentation of results to achieve and demonstrate Ozone EDR Maturity.				
Subtask 1.1:				
Subtask 1.2:				
Subtask 1.3:	September 2025			
Task 2: Monitor and validate products by using ground-based assets and time series analysis and comparisons,				
Subtask 2.1:				
Subtask 2.2:				
Subtask 2.3:				
Task 3: Maintain, monitor, trouble-shoot all NOAA Nadir Ozone and SO ₂ products.				
Subtask 3.1:				
Subtask 3.2:				
Subtask 3.3:				
Task N: Update Limb validation, codes, monitoring and tables as needed.				
Subtask 4.1: Provide delta-DAPs as NASA improves Level 1 corrections or makes other tables, corrections or code modifications.				
Subtask 4.2: Provide weekly tables deliveries for Darks, Wavelengths and Orbital Definition files				
Subtask 4.3: Complete NOAA-21 V2Limb validation and move to operations – Support ORR	December 2024			
Subtask 4.4: Support J3/J4 progress and prepare Limb Cal/Val Plans.				

Sea Surface Temperature

Accomplishments / Events:

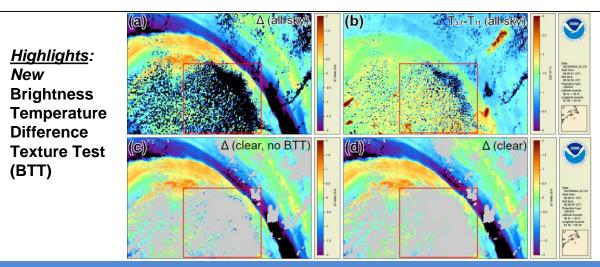
- We wrapped up development of ACSPO VIIRS V3.00. We are now doing final checks/validation and working with archival agencies for suggested edits to file metadata. ACSPO V3.00 is schedule for ASSISTT delivery on January 15.
- We reprocessed 1 year of VIIRS SST using ACSPO V3.00 for all three VIIRS instruments (NPP, N20 & N21). The purpose of the exercise was to ensure long term stability of ACSPO V3.00.
- We worked on bringing the ACSPO VIIRS ATBD up to date. The ACSPO clear-sky mask (ACSM) received a complete overhaul in V3.00 and now comprises 14 clear-sky tests. All tests are either new or substantial updates to previous test. As an example, the figure demonstrates the merit of the newly develop Brightness Temperature Difference Texture Test (BTT), which is based on the spatial variability of the channel M12 and M15 brightness temperature (BT) difference. We also generalized the ACSPO ATBD to be applicable to SST products from other sensors (AVHRR, MODIS, ABI & AHI).
- We finished about 50% of work related to the ATBD update in November and we expect the up-todate ATBD will be ready before the planned January 15 ASSISTT delivery.

Milestones	Original Date	Forecast Date	Actual Completio n Date	Variance Explanation
SST EDR support to SDR team on Warm up - Cool down anomalies	Feb-24	Feb-24	Jan-22	
SST EDR Support to JPSS-3 Data System Test Event (Dependency on JPSS)	Apr-2 4	Apr-2 4		Delay due to dependency on JPSS test event; new timeline unknown
SST EDR Enterprise Cal/Val and ACSPO Algorithm "Agency Report" Presentation to GHRSST science community	Jun-24	Jun-24	Jun-24	
SST EDR Enterprise Cal/Val Plan Initial Updates	Jul-24	Jul-24	Jul-24	
Promote experimental iQuam updates to live access	Aug-24	Dec-24		Additional QC algorithm updates
SST EDR Validated Maturity Review	22-Aug- 24	22-Aug- 24	Feb-20	

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation		
Cost / Budget		х					
Technical / Programmatic		х					
Schedule		х					

. Project has completed.

Overall Status:


2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

Due to degraded Stability of STAR IT infrastructure in the last 6 months, our ACSPO code delivery to ASSISTT is a month behind schedule. The situation is exacerbated by our inability to buy new hardware and uncertain future of cloud migration for STAR science teams.

NPP VIIRS imagery from the Northern Atlantic. This scene contains strong thermal fronts that are challenging for texture-based cloud tests due to potential misclassification of strong SST gradients as clouds. (a) Satellite minus reference SST anomaly (Δ) without any masking applied. (b) M12 and M15 BT difference. (c) Δ with the ACSM applied (BTT omitted). (d) Δ with the full ACSM applied (including BTT).

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: Deliver L3S-LEO Daily to ASSISTT/OSPO; contingency on non-JPSS and non-NOAA data inputs	June 2025 (FY25)			
Subtask 1.1: Created and test Delivered Algorithm Package (DAP), containing L3S Daily code along with required libraries, ancillary data, and sample files	May 2025 (FY25)			
Subtask 1.2: Deliver L3S Daily DAP to ASSISTT and work with ASSISTT on troubleshooting and validation	June 2025 (FY25)			
Task 2: Full-mission Reanalysis (RAN) of VIIRS SST data from NPP, N20 & N21 using the latest version of ACSPO (Version 3.00)	September 2025 (FY25)			
Subtask 2.1: Recruit and familiarize staff	October 2024 (FY25)			
Subtask 2.2: Evaluate long term stability of VIIRS SST and compare with stability of VIIRS thermal bands.	April 2025 (FY25)			
Subtask 2.3: Investigate stabilization (de-trending) of long-term SST bias drift to create a maximally stable, long- term VIIRS SST dataset.	July 2025 (FY25)			
Subtask 2.4: Perform reprocessing using on-premise NOAA STAR compute hardware	August 2025 (FY25)			
Subtask 2.5: Deliver RAN data sets to PODAAC, CoastWatch & NCEI	September 2025 (FY25)			
Task 3: Continue improvements, validation of thermal fronts; shore up processing to use fronts to improve the ACSPO clear sky mask	September 2025 (FY25)			
Subtask 3.1: Support for using position and strength of thermal fronts to improve ACSPO clear-sky mask will be included in the ACSPO VIIRS 3.00 DAP delivery (see Task 5) to ASSISTT.	December 2024 (FY25)			
Subtask 3.2: Investigate viability of validating accuracy of thermal fronts using in situ SST from Sail Drones.	September 2025 (FY25)			

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 4: Collaborate across NESDIS and NOAA on "next generation SST product suite", including exploring ACSPO L4	September 2025			
Subtask 4.1: Identify best way forward towards creating a STAR L4 SST product that covers the 1981-on era. Two viable approaches are (1) Extend the ACSPO L3S-LEO Daily product to fill in data gaps due to clouds. (2) Use existing Geo-Polar Blended L4 SST algorithm using reprocessed ACSPO SSTs from AVHRR, MODIS, VIIRS, ABI, and AHI sensors.	September 2025			
Subtask 4.2: Perform full-mission reprocessing of all ACSPO SST datasets to improve SST quality and uniformity	September 2025			
Task 5: Continue refining ACSPO Clear Sky Mask to reduce over screening and residual cloud leakages. The overarching goal is improving both quantity (number of clear sky pixels) and quality (accuracy/precision).	Ongoing; target next update for delivery of ACSPO 3.00 (FY25)			
Subtask 5.1: Create and test Delivered Algorithm Package (DAP) for ACSPO V3.00 VIIRS. ACSPO version 3.00 contains substantial improvements to the VIIRS clear-sky mask in terms of reduced cloud leakages and improved coverage in dynamic regions.	November 2024 (FY25)			
Subtask 5.2: Deliver DAP to ASSISTT and work with ASSISTT on troubleshooting and validation	December 2024 <i>(FY25)</i>			

Snowfall Rate

Accomplishments / Events:

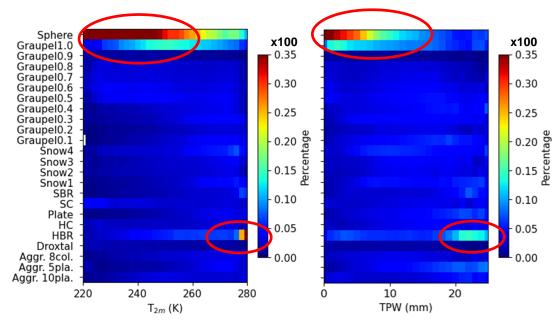
- The SFR team is preparing for the next delivery in December. Some of the major updates includes coverage extension to over ocean (open ocean, sea ice, and coast) for all six satellites, and inter-calibrated algorithms that improve consistency across satellites.
- The study on microphysics has shown benefits to the SFR products. A total of 24 ice habits from two microwave (MW) scattering databases are examined for their impact on snowfall rate retrievals. The ice habits form under different environmental conditions and have various representations in MW measurements. Preliminary study on a machine learning-based combination of ice habits has led to improved SFR performance. The goal of this study is to update the SFR algorithm with advanced microphysics in the future.
- All members of the SFR team attended the AGU meeting and presented in various format, oral, poster, and NOAA Booth.

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
SFR delivery including ocean coverage	12/2024			
Development of NPreciSe web-portal and archive	12/2024			
Cross calibration for NOAA-21, NOAA-20, S-NPP, Metop- B, Metop-C, and GPM	4/2025			
Extending the study to include climatology in NPreciSe	6/2025			
Advanced microphysics for NOAA-21, NOAA-20, S-NPP, Metop-B, Metop-C, and GPM	6/2025			
2D SFR bias correction for NOAA-21, NOAA-20, S-NPP, Metop-B and Metop-C	6/2025			

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

1. Project has completed.


2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks: None

Highlights:

Occurrence of the best ice habits based on SFR retrieval and the reference data as a function of 2-m temperature (left) and total precipitable water (right)

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: Advanced microphysics for NOAA-21, NOAA-20, S-NPP, Metop-B, Metop-C, and GPM	June 2025			
Subtask 1.1: Study scattering properties of various ice habits and their impact on S-NPP snowfall rate retrieval	December 2024			
Subtask 1.2: Develop AI/ML-based optimal combination scheme for multiple ice habits to improve S-NPP SFR 2/2025	February 2025			
Subtask 1.3: Develop advanced microphysics for the other satellites	June 2025			
Task 2: Cross calibration for NOAA-21, NOAA-20, S-NPP, Metop-B, Metop-C, and GPM	April 2025			
Subtask 2.1: Select reference satellite	October 2024			
Subtask 2.2: Create collocated datasets for all satellites with the reference satellite	January 2025			
Subtask 2.3: Perform cross satellite calibration and derive correction model for each satellite	April 2025			
Task 3: 2D SFR bias correction for NOAA-21, NOAA-20, S-NPP, Metop-B and Metop-C	June 2025			
Subtask 3.1: Feature analysis and construction of training datasets for 2D ML models	March 2025			
Subtask 3.2: Train 2D bias correction models	June 2025			
Task 4: Development of NPreciSe web-portal and archive	December 2024			
Subtask 4.1: Develop and implement new webpage interface to enable hosting the NPreciSe web portal	September 2024			
Subtask 4.2: Migrate the processing and archiving system to a new server	December 2024			
Task 5: Extending the study to include climatology	June 2025			
Subtask 5.1: Add monthly statistics of detection and estimation errors of the MiRS product to the NPreciSe system	June 2025			

Surface Reflectance

Accomplishments / Events:

- Continue preparing the updated DAP for the next delivery. Verify the new results against current operational data, test the new global statistics for monitoring, and redefine the threshold as needed.
- Using long-term VIIRS SDR/L1B data, compare the NOAA and NASA recalibrated TOA reflectance coefficients. Since significant differences were identified, a verification process will be conducted to evaluate the two datasets and analyze their impact on downstream products such as VI and LAI.
- Maintain routine SR monitoring tools, including the daily global true-color image and weekly AERONET validation.
- Focus on improving SR validation through BRDF correction and explore methods for analyzing surface BRDF characteristics.

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Provional Maturity of NOAA-21	Feb-24	Feb-24	Jan 25, 2024	
The JPSS (SNPP, N20, N21) SR consistency evaluation and correction	Mar-24	Mar-24	Mar 28, 2024	
GOES-R enterprise SR algorithm development and experimental product	Jun-24	Jun-24	Jun 28, 2024	
Operational Readiness Review (ORR) for NDE Migration to NCCF	Aug-24	Aug-24	Nov 13, 2023	Completed ahead of schedule
Develop SR software package using the reprocessed SDR to reduce the inconsistency	Nov-24	Nov-24	Nov 25, 2024	
The reprocessed SR consistency evaluation	Dec-24	Dec-24		

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		х			

1. Project has completed.

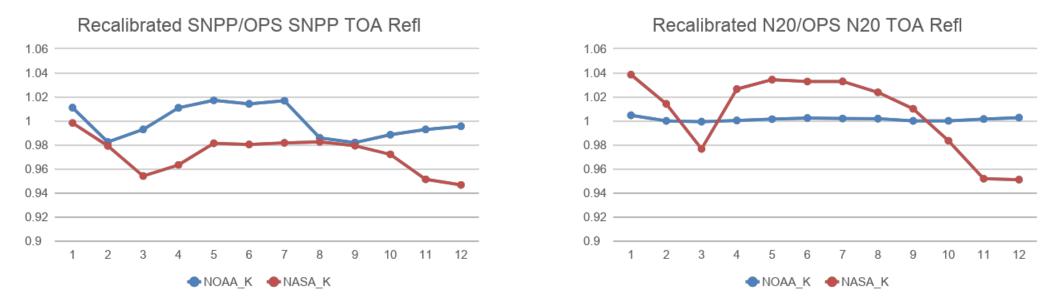
2. Project is within budget, scope and on schedule.


3. Project has deviated slightly from the plan but should recover.

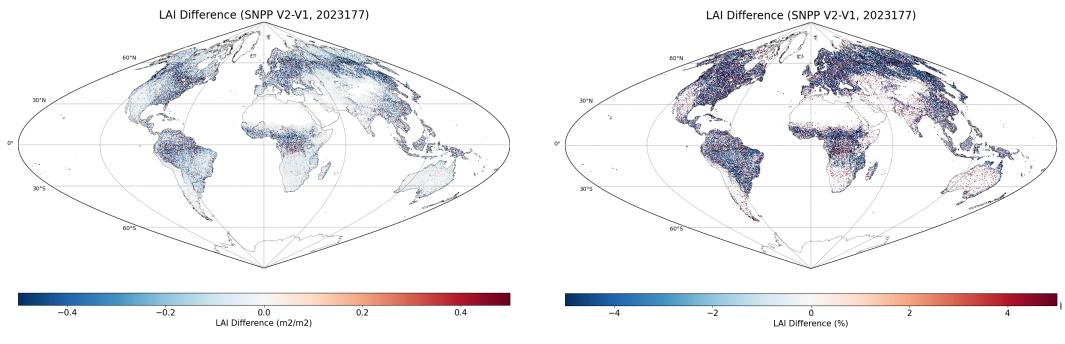
4. Project has fallen significantly behind schedule, and/or significantly over budget.

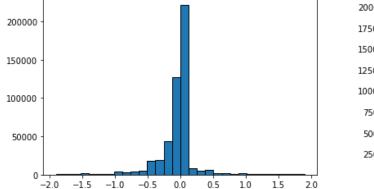
Issues/Risks:

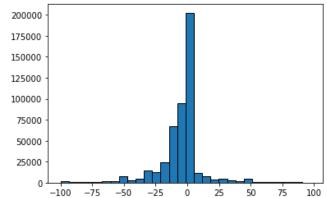
None


<u>Highlights:</u>

NOAA Reprocessed SDR and NASA recalibration coefficients comparison over VIIRS 12 SR bands (I1-3, M1-5, M7-8, M10-11), the two NDVI bands with close results while others with significant difference up to 4% which need further investigation.


- Datasets
 - NOAA operational SDR and reprocessed SDR (SNPP: N20:)
 - NASA VNP09 v1 and v2 and VJ109 v2.
- Results
 - Significant difference found between NOAA and NASA recalibrated TOA reflectance. The Red and NIR bands (I1/I2, M5/M7) are very close between NOAA and NASA. (2% lower NIR □ ~3-5% lower LAI)
 - NOAA N20 recalibration is minor change while NASA is significant.
 - NASA with a slight linear change over years while NOAA with similar trend.
 - Further evaluation is needed.


The recalibration coefficients (TOA_New = TOA_Old*k) comparison between NOAA and NASA methods for 12 SR bands (I1-I3, M1-5, 7-8, 10-11)

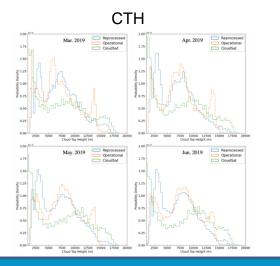


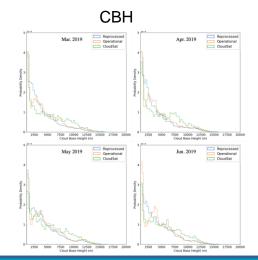
• The SNPP LAI difference using the original SR and recalibrated SR

- For SNPP, the recalibrated SR (v2) with lower NIR value (~2%) and slight lower Red value (~0.1%)
- The v2 LAI with lower LAI compared with v1, histogram in right figure shows.
- The difference could up to 5%.

Task/ Description	Start	Finish	Deliverable	Requirement (Dev Only)
Develop SR software package using the reprocessed SDR to reduce the inconsistency.	10/1/2024	12/31/2024	New test datasets	
SR Algorithm improvement to address the issues found in validation.	04/1/2025	06/30/2025	Algorithm test report.	JPSS L1RD requirement
updated DAP delivery (include the mitigation algorithm)	01/01/2025	03/31/2025	mDAP delivery to ASSIST	
The reprocessed SR consistency evaluation	10/1/2024	12/31/2024	Validation report	
SNPP, N20 & N21 monitoring and validation and user feedback & response	7/1/2025	9/30/2025	Analysis reports	

D	I	С	М	L
Development	Integration &Testing	Calibration & Validation	Maintenance	LTM & Anomaly Resolution




SNPP VIIRS EDR and Microwave Sounding CDR Reprocessing

Nov. 2024

Accomplishments / Events:

- The RWG completed the initial draft of the quality assessment paper on one year of SNPP VIIRS CTH and CBH EDR reprocessed data sets, which includes various additional computations to verify the accuracy of the reprocessed data sets.
- The Figures below are histograms of probability density for reprocessed VIIRS (blue), operational VIIRS (orange) and CloudSat-CALIPSO (green) CTH (left) and CBH (right) data for Mar. – Jun. 2019.
- Algorithm and software maintenance and quality control to keep the MLT CDR products into operations
- Monthly updates and delivery of CDR Products to NCEI (see figures next slid)

Milestones	Original Date	Forecast Date	Variance Explanation
Monthly updates and delivery of microwave sounding CDR products	Monthly (Oct.24~Sep25)		
Assess the quality and accuracy of one-year reprocessed cloud base height and cloud top height EDRs	Dec-24	Dec-24	
Making plans for on-demand reprocessing, including setting up server environment for testing, computation efficiency comparison for options, cost comparison, etc.	Mar-25		
Assess the quality and accuracy of one-year reprocessed other cloud EDRs (e.g., Cloud layers, cloud phase, cloud optical depth)	Apr-25		
Continue to reprocess SNPP VIIRS EDRs (target: finish ~2.5 years of data if the GMU cluster computing system is ready)	Sep-25		
Prepare the reprocessed data for transition to CLASS or cloud	Sep-25		
Technical analysis and reports per ad hoc request from JPSS and STAR management, including monthly report	Oct-24 to Sep-25		

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic				х	Execution delay is expected due to issues in STAR servers
Schedule			х		and retirement of UMD computer system

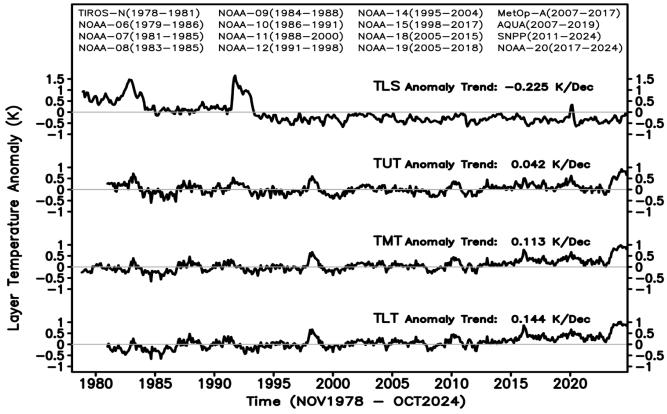
1. Project has completed.

2. Project is within budget, scope and on schedule.

Project has deviated slightly from the plan but should recover.

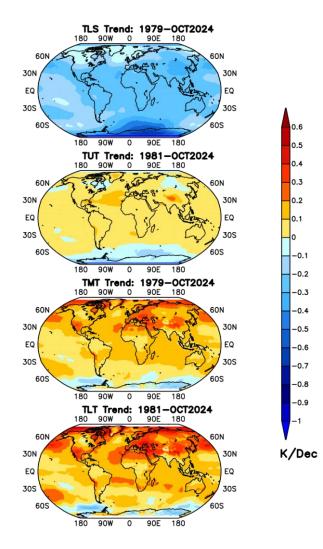
4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:


The VIIRS EDR reprocessing was relying on the UMD Bamboo system previously, which had officially retired in July 2024.

 A mitigation plan is being developed by using GMU cluster computer system for continued reprocessing of VIIRS EDRs

SNPP ATMS Microwave Sounding CDR Monthly Report in November 2024


 Monthly updates and delivery of CDR Products to NCEI AMSU-A FCDR L1c data product for October 2024 AMSU-A FCDR_Gridded data product for October 2024 NOAA MLT V5.0 data products from November 1978 to October 2024

MSU/AMSU-A/ATMS Global Mean Layer Temperature Anomaly Time Series

Global Mean Time Series of TLT, TMT, TUT and TLS from NOAA MLT V5.0 CDR Products from November 1978 to October 2024

Trend map of TLT, TMT, TUT and TLS from NOAA MLT V5.0 CDR data products

FY25 VIIRS and Microwave Sounding Reprocessing Milestones/Deliverables

	Milestone	Start	Finish	Deliverable
1	Monthly updates and delivery of microwave sounding CDR products	Oct-24	Sep-25	Deliver microwave sounding CDR Products to NCEI; CDR website maintenance
2	Assess the quality and accuracy of one-year reprocessed cloud base height and cloud top height EDRs	Jun-24	Dec-24	One year of quality-assured SNPP VIIRS cloud base height and cloud top height EDR products; one manuscript draft about the work
4	Making plans for on-demand reprocessing, including setting up server environments for testing, computation efficiency comparison for options, cost comparison, etc.	Dec-25	IVIAI-20	Optical reprocessing plan; well-setting up processing package
3	Assess the quality and accuracy of one-year reprocessed other cloud EDRs (e.g., Cloud layers, cloud phase, cloud optical depth)	Jan-25	Apr-25	One year of quality-assured SNPP VIIRS cloud layers, cloud phase, cloud optical depth EDR products
5	Continue to reprocess SNPP VIIRS EDRs (target: finish ~2.5 years of data)	Mar-25	Sep-25	New SNPP VIIRS cloud reprocessed products
6	Prepare the reprocessed data for transition to CLASS or cloud	Aug-25		SNPP reprocessed cloud EDR products (one year or longer) for transition to CLASS
7	Technical analysis and reports per ad hoc request from JPSS and STAR management, including monthly report	Oct-24	Sep-25	Analysis reports

D	I	С	М	L
Development	Integration & Testing	Calibration & Validation	Maintenance	LTM & Anomaly Resolution

Surface Type

Accomplishments / Events:

- STAR-UMD VIIRS Surface Type team has downloaded and processed NOAA-21, NOAA-20, and S-NPP VIIRS daily granule surface reflectance data acquired in November of 2024 for the production of AST-2024.
- The team continue to monitor the quality of the global daily mosaics and monthly composites generated based on newly acquired surface reflectance data. The daily mosaics and monthly composites are the intermediate products required by the AST algorithm.
- The team has downloaded all GEDI LiDAR data and used them to create gridded canopy cover and tree height data at the 1km resolution. These gridded products are being used to improve the surface type reference dataset, which will be used to train the surface type classification algorithm and to validate the 2024 AST product.
- The team continue to produce global monthly water surface fraction (WSF) product. The 2024 WSF product suite shows the transcontinental impact of monsoon rainfall over North Central Africa (see highlights).

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Monthly update of the 250m global water surface fraction product	Each M.	Each M.		
Complete global monthly composites for each of 2024 months	Feb-25	Feb-25		
Generate global annual classification metrics for 2024	May-25	May-25		
AST24 of IGBP 17 type map	Aug-25	Aug-25		
AST24 for EMC 20 type map	Aug-25	Aug-25		
AST24 Validation Statistics and delivery to JSTAR and users	Sept-25	Sept-25		

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			

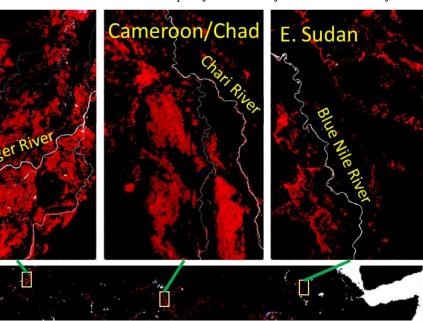
1. Project has completed.

2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

Mali

4. Project has fallen significantly behind schedule, and/or significantly over budget.


Issues/Risks:

None

<u>Highlights:</u>

Monsoon rainfall over West Africa occurs from June to September, but the 2024 monthly WSF product shows that the impact can reach as far as Sudan in eastern Africa. This figure shows the WSF data for September, June, and March of 2024 in red, green, and blue. The red tones indicate areas flooded in September but not in June/March. The bottom image covers the entire north central Africa continent from Senegal in the west to Somalia in the east. The ground area of each zoom in window is about 120km by 200 km.

Monthly WSF Product Shows Transcontinental Impact of Monsoon Rainfall over North Central Africa

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: Improving and updating the surface type training and validation polygons				
Subtask 1.1: Update training polygons where the surface type label has changed	Sept-25			
Subtask 1.2: Add new training polygons where existing training data are not enough	Sept-25			
Subtask 1.1: Update validation polygons where the surface type label has changed	Sept-25			
Task 2: Processing VIIRS surface reflectance data acquired during this funding year for surface type mapping				
Subtask 2.1: Map VIIRS SR data from satellite swath to the global 1 km grid to create global daily mosaic	Each day			
Subtask 2.2: Create cloud free monthly composites from the daily mosaics	Each month			
Subtask 2.3: Generate annual classification metrics using the 12 monthly composites of 2024	Apr-25			
Task 3: Producing AST24				
Subtask 3.1: Develop the SVM model and use the model to classify the 2024 VIIRS annual metrics	May-25			
Subtask 3.2: Post-process the SVM classification to produce the final AST24 product	Aug-25			
Subtask 3.3: Validate AST24 to generate accuracy statistics	Sept-25			
Subtask 3.4: Deliver AST24, update ATBD and the surface type webpage	Sept-25			

Vegetation Health

Accomplishments / Events:

- Continued monitoring of vegetation health as indicated by publications of weekly vegetation health products (VHP) from currently operational NOAA-20 VIIRS observations via STAR webpage at https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_browse.php.
- Created and reviewed a poster titled "Analysis of Satellite Vegetation Health Indices for Country-Level Wheat Yield Forecasting" for presentation at the AGU 2024 annual meeting. The poster was then reformatted into a new version using templates set by STAR front office for AGU posters.
- Initiated an effort to evaluate the quality of weekly GVI composite data. The plan includes performing a comprehensive sanity check on past VIIRS SDR data for S-NPP, NOAA-20 and NOAA-21 from 2012 to the present. The goal is to provide insights for future updates to VHP climatology based on the quality of the weekly composites. As a first step, updated and analyzed the daily count of VIIRS granules at: https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/npp_granules.php.

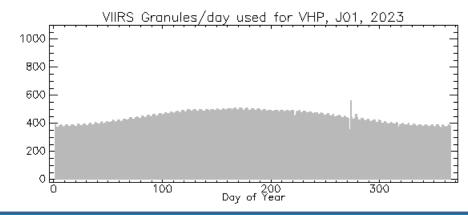
Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
NOAA-21 Vegetation Health Beta Maturity	Sep-23	Sep-23	Sept-23	
NOAA-21 Vegetation Health Provisional Maturity	Apr-24	Apr-24	Sept-23	Maturity reached before plan
NOAA-21 Vegetation Health Validated Maturity	Apr-24	Apr-24	Sept-23	All VIIRS EDRs declared Validated Maturity

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		х			

1. Project has completed.

2. Project is within budget, scope and on schedule.


3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

None

Highlight: The number of VIIRS granules per day has been updated to reflect the SDR data availability for VHP production since 2012. Below is an example of the daily granule counts for NOAA-20 in 2023. This basic data availability information can be used to calculate weekly statistics on the number of days with valid CH1 data.

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: Deliver CCAP for VIIRS 500m global Vegetation Health Products	September 2025			
Subtask 1.1: Hire staff member to lead work	March 2025			
Subtask 1.2: Reconfigure computer code for 500m products using NOAA-20/21 I- bands observations	June 2025			
Subtask 1.3: Create and validate CCAP and deliver to ASSISTT	September 2025			
Task 2: Develop CCAP for value-added and science-enhanced ASCII and Geotiff data files of regional Vegetation Health Products	September 2025			
Subtask 2.1: Confirm staff member to lead the task	March 2025			
Subtask 2.2: Restructure compute code/scripts and ancillary data base for the VHP tailored for major crop regions	June 2025			
Subtask 2.3: Create and validate CCAP and deliver to ASSIST	September 2025			

Vegetation Index and Green Vegetation Fraction

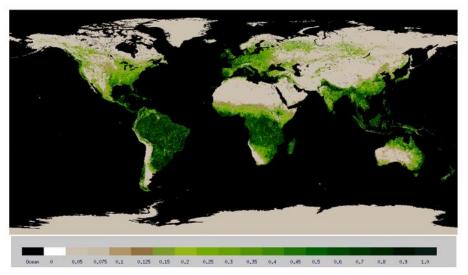
Accomplishments / Events:

- Finished 1km NVPS DAP delivery
- In response to new request from EMC for Stem Area Index (SAI), preliminary research and prototype building.
- Finished cal/ val update for SNPP and NOAA-20

_					
	Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
1	km global VIIRS VI code and documentation ready for delivery	Oct-23	Nov-23	Nov-23	Personnel access to NOAA systems issues
	NOAA-21 VI and GVF provisional maturity review	Jan-24	Jan-24	Jan-24	
Hię	gher-resolution regional VI and GVF domain extended to global	Feb-24	Apr-24	Nov-24	Delayed due to PCR review
Ex	perimental data test of blended VI and GVF products	Apr-24	Jul-24	Jul-24	Delays to previous milestone and personnel departure
	Support to JPSS-3 Data System Test	Apr-24	Apr-24		No J03 test data will be available this year
	Readiness for NCCF migration	Aug-24	Aug-24		
	Annual algorithms/ products performance report	Aug-24	Aug-24		
C	Calibration/ Validation update for SNPP and NOAA20 VI and GVF products,	Sep-24	Sep-24	Oct-24	Comparison with other data sets necessary

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		х			


- 1. Project has completed.
- 2. Project is within budget, scope and on schedule.
- 3. Project has deviated slightly from the plan but should recover.
- 4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

None

<u>Highlights:</u>

1km weekly GVF image for the period 10/05/2023 - 10/20/2023

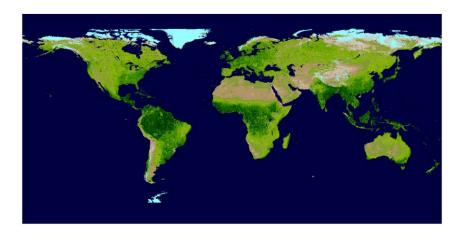
1km NVPS DAP delivery (1km global VI and GVF)

	Delivered Items	Description	Status
Codes	VI_CODE_V4.0	VI code package v4r0 to produce 1km global VI product and daily SR IP for the use of GVF algorithm	
	GVF_CODE_V4.0	GVF code package v4r0 to produce 1km global GVF product	
	VIIRS_VI_ATBD_v4r0_20241205.p df	ATBD version 4.0 for VI	
	VIIRS_GVF_ATBD_v5r0_20241205 .pdf	ATBD version 4.0 for GVF	
Docs	README_NVPS_DAP_v4r0_20241 205.pdf	ReadMe document to describe the use of both the code packages	
	Memo_NVPS_DAP_v4r0_2024120 5.pdf	Provide notations on this current DAP	
	VIIRS_NVPS_EUM_v5r0_20241205.pdf	External User Manual	
	VIIRS_NVPS_SMM_v5r0_20241205.pdf	Software Maintenance Manual	ASSIST

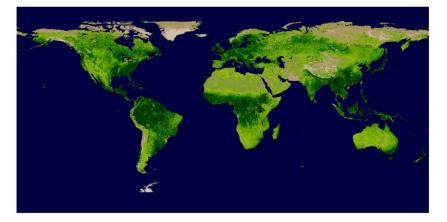
1km NVPS DAP delivery (1km global VI and GVF)

	Delivered Items	Description	Status
	GITCO, SVI01, SVI02, SurfRefl, JRR-CloudMask, JRR-AOD	Raw input data for VI	
	VI-SR	16 days of daily gridded surface reflectance data covering the test period	
Data	GVF-EVI	15 weeks of weekly composited EVI data for timeseries smoothing for GVF calculation	
	VI-DLY, VI-WKL, VI- BWKL	Final output of daily, weekly, and biweekly VI product for verification	
	GVF-WLK	Final output of weekly GVF product for verification	

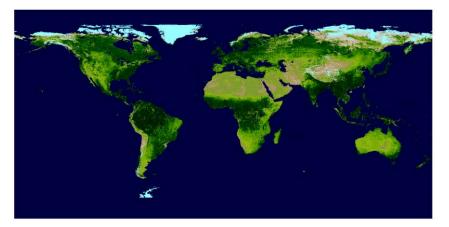
• Test period: 11/15/2024 ~ 11/30/2024


Key changes versus last version

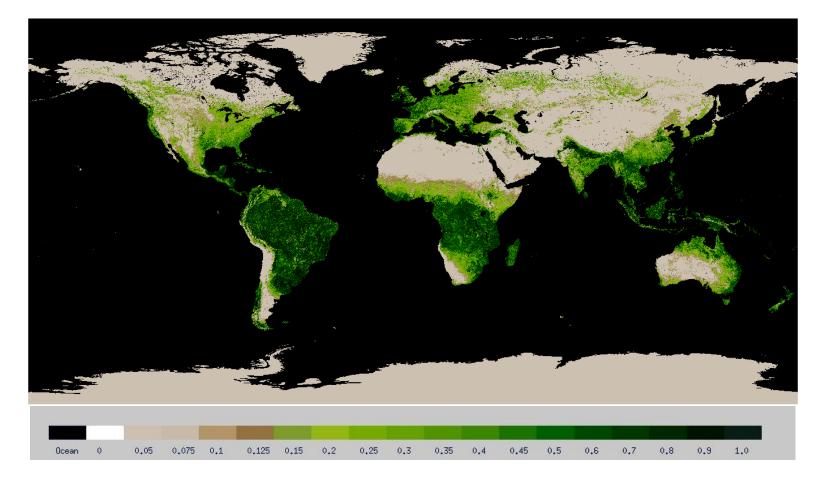
- Extend the regional 1km resolution ouput to be global
- Remove the global 4km resolution output
- Exclude pixels with VZA higher than 65° in the aggregation process
- Add an indicator to the statistics output for NCCF monitoring purposes
- Fix some minor bugs in the attributes of the final NetCDF output files.


IRENTIAL STATE OF A SET A SET OF A SET

Biweekly VI images for the period 10/05/2023 - 10/20/2023


TOC_E VI

TOA_N DVI



TOC_N DVI

1km weekly GVF image for the period 10/05/2023 - 10/20/2023

FY25 Milestones/Deliverables

	Milestone	Start	Finish	Deliverable	Requirement (Dev Only)
1	Final report of blended VI and GVF products; for suitability of operational production	Oct-24	Jan-25	Code and test data	
2	Reprocessing readiness of SNPP and NOAA-20 VI and GVF data records	Jan-25	May-25	Software readiness	
3	Evaluation of methods for handling data gaps in GVF 15 weeks of historical data	Oct-24	Jan-25		GVF requirements
4	Further development of 20m VI downscaling	Jan-25	Jun-25	Code and examples	VI requirements
5	AI/ML based algorithm development for the vegetation product derivation and validation	Feb-25	Aug-25	Experimental code and test data	GVF requirements
6	Experimental version of VI and GVF production combined with Vegetation Health	Apr-25	Sep-25	Experimental code and test data	VI and GVF requirements

VIIRS SDR

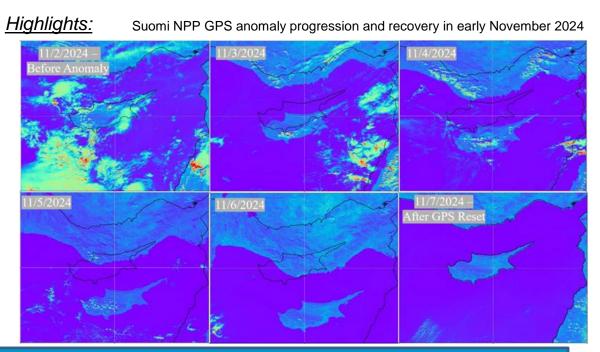
Accomplishments / Events:

- Supported the 11/2/2024 Suomi NPP GPS anomaly investigation by using geolocation validation system (CPM), off-line analysis of sample data (coastline images), and modeling using orbital perturbation: confirmed recovery from the anomaly on 11/6/2024 around 17:20 UTC
- Created the half of the initial prelaunch JPSS-4 VIIRS SDR LUTs that did not require processing on NOAA STAR IT systems any export-controlled data
- Downloaded from GRAVITE and examined the first JPSS-4 VIIRS RDR files created by the Flight Project from the satellite testing in October 2024: with the current 85.35-s granule size, every 6th granule includes 49 scans that cannot be processed with IDPS/ADL
- Assisted in scheduling and analyzed data from NOAA-21, NOAA-20, and Suomi NPP VIIRS lunar calibration on 11/12/2024: data aligns well with long-term trends and exhibits consistency
- Generated and delivered for deployment in the IDPS operations the updated NOAA-21, NOAA-20 and Suomi NPP VIIRS SDR DNB DN0 and GAIN-RATIOS LUTs that were created based on data acquired during the new moon on 11/1/2024

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
TSIS-1 solar spectrum application for JPSS-3/-4 VIIRS	Dec-24		11/15/2024	
JPSS-4 VIIRS pre-launch characterization report	Mar-25			
JPSS-3/-4 VIIRS granule size change verification	Mar-25			
VIIRS cross-calibration with hyperspectral measurements	Jun-25			
Suomi NPP and NOAA-20 VIIRS intermediate recalibration	Jun-25			
"Monthly" VIIRS lunar calibration predictions and analyses	Jul-25			
JPSS-3/-4 VIIRS waiver impact studies report	Sep-25			
Cross-calibration and comparison among NOAA-21, NOAA-20, and Suomi NPP VIIRS report	Sep-25			

Overall Status:

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		Х			


1. Project has completed.

2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

Task Category	Task/Description	Start	Finish	Deliverable	Requirement(dev. only)
Developme nt (D)	 Impact of polarization sensitivity on VIIRS SDR(waiver) Cross calibration with hyperspectral measurements from PACE OCI and ISS/EMIT using SNOs and PICS 	10/2024 10/2024	9/2025 9/2025	Analysis reportInter-Cal report	 JPSS Mission JPSS Mission
	 TSIS solar spectrum application for JPSS-3/4 Vicarious calibration over sun glint Cloud-based geolocation validation tool development Assessment of space weather impact on VIIRS SD reflectance degradation changes Simulated J4 VIIRS SDR TEB products to assess impacts of RSR differences (waiver) J3 scan rate change on DNB/M16A HSI (waiver) J3/J4 SWIR band Radiometric Response Characterization Uncertainty (RRCU) (waiver) 	10/2024 10/2024 10/2024 10/2024 10/2024 10/2024 10/2024	9/2025 9/2025 9/2025 9/2025 9/2025 9/2025 9/2025 9/2025	 Application report Cal. report Cloud-based tool Impact report Impact report from Simulation HSI Impact report SWIR RRCU Impact report 	 JPSS mission
Integration & Testing (I)	 Cloud migration of VIIRS Cal/Val tools Analyze test results for updated versions of IDPS software 	10/2024 10/2024	9/2025 9/2025	 Cloud migration Mx checkout reports 	
Calibration & Validation (C)	 J4 prelaunch data analysis, processing parameters Study of J3/J4 waiver impacts on user applications Global Regional Validation Site (GReVS) improvement SNPP, NOAA-20 and NOAA-21 VIIRS preliminary and final recalibration Offline RSB/DNB/TEB Cal/Val analyses and trending Cross-calibration and comparison among NOAA-21, NOAA-20, and SNPP VIIRS NOAA-20 VIIRS as GSICS reference support 	10/2024 10/2024 10/2024 10/2024 10/2024 10/2024 10/2024 cument requ	9/2025 9/2025 9/2025 9/2025 09/2025 09/2025 09/2025 rements for c	 Cal verification report Impact report Cloud/Web-based GReVS Re-calibration coefficients VIIRS RSB/DNB/TEB performance summary Cross-Cal report GSICS support report 	

Task Category	Task/Description	Start	Finish	Deliverable
Maintenance	 Monthly lunar calibration (precision prediction delivered to flight operations; analysis on acquired lunar data) Monthly delivery of VIIRS DNB calibration LUTs; Delivery of VIIRS RSB and TEB calibration LUTs to mitigate degradation; 	10/2024 10/2024	7/2025 9/2025	 Lunar roll prediction monthly for lunar (to OSPO) Monthly LUT updates (to OSPO) LUT delivery as needed
	 Delivery of VIIRS DNB straylight LUTs; Maintain the performance trending at vicarious sites 	10/2024	5/2025	 LUT delivery as needed LUT delivery as needed Sustained validation website for the G20+ vicarious sites
	• Geolocation monitoring using CPM (Applicable to SNPP, NOAA-20 and NOAA-21)			• CPM geolocation monitoring (report)
LTM & Anomaly Resolution (L)	Instrument parameter performance trending	10/2024	09/2025	 Report on instrument parameter performance trending (in collaboration with ICVS) Anomaly report
	Participate in anomaly investigations	10/2024	09/2025	

Please document requirements for developmental work.

VIIRS Flood Mapping

Accomplishments / Events:

• JPSS Flood monitoring has captured multiple events this month. One example is the downscaled 30 meter resolution VIIRS flood depth estimates on Sept 17th, 2024 after historic rainfall occurred across the Cape Fear Region of southeastern North Carolina from Potential Tropical Cyclone Eight. Gauges and automated radar estimates showed that 12 to 20 inches of rain fell in only two days.

- NOAA Satellites posted the results from the JPSS downscaled flood depth (https://x.com/NOAASatellites/status/183647484 6496330162).
- The downscaled product is currently still in development, but pre-operational estimates can be found at the JPSS Flood Proving Ground (http://floods.ssec.wisc.edu/?products=VIIRS-3Dflood).

	Overall	Status:
--	---------	---------

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		х			

1. Project has completed.

2. Project is within budget, scope and on schedule.

3. Project has deviated slightly from the plan but should recover.

4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

None

Highlights:

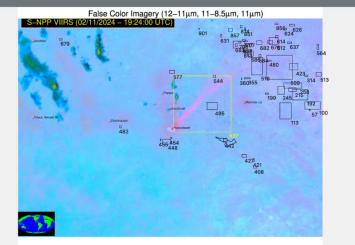
Volcanic Ash

Accomplishments / Events:

- Quality/Oversight Continued to ensure high guality Volcanic Ash retrievals from EDR algorithms and VOLCAT. Routine validation of existing JPSS volcanic ash EDRs from current sensors will continue as needed, including support for ASSISTT/NDE evaluations. VOLCAT is long-term plan.
- VOLCAT VIIRS volcanic ash plume identification and extraction work is an enhancement to the VOLCAT methodology. The most recent research focus has been developing a web-page based tool to manually classify VOLCAT volcanic cloud objects by a science team expert (as yes (containing volcanic ash) or no (not containing volcanic ash)). This will enable a full training database to be generated for ash and non-ash clouds for training the AI/ML methodology, including both detected and missed volcanic clouds by the current VOLCAT algorithm. The science team completed identifying and reprocessing scientifically interesting cases (e.g., volcanic clouds, VOLCAT false alarms, etc.) and are currently classifying these reprocessed cases to be included in the AI/ML training dataset. An example of the tool and recent case is shown in the included figure.
- The VOLCAT science team completed research to support VOLCAT imaging that optionally utilizes VIIRS I-bands.

	Overal	<u>l Status:</u>
--	--------	------------------

	Green ¹ (Completed)	Blue ² (On-Schedule)	Yellow ³ (Caution)	Red ⁴ (Critical)	Reason for Deviation
Cost / Budget		х			
Technical / Programmatic		х			
Schedule		х			


Project has completed. 1.

- Project is within budget, scope and on schedule. 2.
- Project has deviated slightly from the plan but should recover. З.
- 4. Project has fallen significantly behind schedule, and/or significantly over budget.

Issues/Risks:

Highlights: An example of the reprocessing and classification work done by VOLCAT science team.

VOLCAT Image Classifier

Question Based Categorization

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Develop updated user training material	Jun-25	Jun-25		
Improve VIIRS volcanic ash plume identification and extraction	Mar-25	Mar-25		
Integration of VIIRS I-bands in VOLCAT workflow	May-25	May-25		
Imaging capabilities of VIIRS I-bands in VOLCAT end-user web graphics	Nov-24	Nov-24	Nov-24	
Quantify added value of VIIRS I-bands	Sept-25	Sep-25		
Update VOLCAT code to ingest any JPSS-3 proxy data if becomes available	Sep-25	Sep-25		

Milestones	Original Date	Forecast Date	Actual Completion Date	Variance Explanation
Task 1: VOLCAT enhancements	September 2025			
Subtask 1.1: Fully integrate VIIRS I-band into VOLCAT workflow	May 2025			
Subtask 1.2: Assess impact of I-band enhancements	Sept 2025			
Subtask 1.3: Implement and test improvements to gridded composites of volcanic cloud properties	September 2025			
Task 2: Preparation for JPSS-3/4	March 2025			
Subtask 2.1: Initial development for JPSS-3 cal/val plan	March 2025			

STAR JPSS Schedule: TTA Milestones

Task	202	2	2023						2024										2025													
	11 1	2 1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7
ATMS SDR/TDR		_						_				Þ					_	>	_					>			1					
CrtS SDR				i (ó.							Þ				_								Þ	-		-					
VIRS SDR					ó.							⊳						\geq	_					Þ								
Imagery EDR					ė –) 🖄				⊳												⊳								
Sea Surface Temperature												Þ												Þ								
Ocean Color					-	\geq						Þ						Þ	_					Þ								
OMPS Ozone (TC:V8TOz)					6			l d	1			⊳												>								
OMPS Ozone (NP:V8Pro)					<u>d</u> –			l b	1			Þ												Þ			-					
OMPS LP (SDR &EDR)												Þ												Þ								
Aerosol Optical Depth (AOD)																																
Aerosol Detection (ADP)			_									Þ				_												-				
Volcanic Ash (VolAsh)										_		Þ												>								
Cloud Mask										_		Þ						Þ						b ~			-					
Cloud Properties			_																									-				
Ice Surface Temperature			_									Þ								_				⊳			-	-				
Sea Ice (Age/Concentration)			-		-					_		Þ				_								>								
Snow Cover			d - 1													_											-	-				
Active Fires			_			D-0						Þ				_		\geq						Þ			-	-		Þ		
Surface Reflectance												Þ												>								
Surface Albedo			_		-							Þ				_			-						-		-	-				
Land Surface Temperature			_									Þ						Þ		_							-	_				
Vegetation Indices					-					_		Þ				_			_					b ~		1	5					
Green Vegetation Fraction			_		-											_			_					>	-		T	-				
Vegetation Health			_									Þ				ΞÞ								⊳				-				
Annual Surface Type												Þ							0					>								
NUCAPS			d -									Þ												b ~			1					
MIRS																		Þ							_		T					
Snow Fall Rate (SFR)												⊳			d d									>								
VIRS Polar Winds (VPW)			-		1																			>			1					
GOSAT-GW			_		t																			>			T					
VIRS Flood Mapping (VFM)						⊳		i ș				⊳												⊳						⊳		

📕 MxCk 📕 JCT 🔷 iDAP 🔷 fDAP 🔷 mDAP Þ Review(EOY) 🕞 PMR Þ iLUT 🏷 fLUT 🔜 iPlan 📕 iPlan 📕 Beta 🛄 Prov 🧾 Vali