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1 INTRODUCTION 
 

1.1 Purpose of This Document 
 
The derived motion wind Algorithm Theoretical Basis Document (ATBD) provides a 
description of and the physical basis for the estimation of atmospheric wind from 
observations from instruments in satellites that NESDIS uses on an operational basis to 
fulfill its mission. These include the Advanced Baseline Imager (ABI) flown on the 
GOES-R series of NOAA geostationary meteorological satellites, the Visible Infrared 
Imaging Radiometer Suite (VIIRS) flown on National Aeronautics and Space 
Administration’s ( NASA) Suomi National Polar-orbiting Partnership (NPP) 
meteorological satellite and NOAA’s Joint Polar Satellite System (JPSS) series of polar 
orbiting satellites, the Advanced Himawari Imager (AHI) flown on the Himawari series 
of Japan’s Meteorological Agency’s (JMA) geostationary meteorological satellites, and 
the Advanced Very High Resolution Radiometer (AVHRR) flown on EUMETSAT’s 
Meteorological Operational Satellite (MetOP) series of polar orbiting satellites.  The 
Derived Motion Wind Algorithm (DMWA) estimates not only the speed and direction of 
identified tracers (clouds and/or moisture gradients), but also their height in the 
atmosphere. This document also provides details on the performance of the DMW 
products as measured against correlative wind measurements from other observing 
systems. 
 

1.2 Who Should Use This Document 
 
The intended users of this document are those interested in understanding the physical 
basis of the algorithms and how to use the output of this algorithm to optimize the use of 
the derived motion wind output for a particular application.  This document also provides 
information useful to anyone maintaining or modifying the original algorithm.   

1.3 Inside Each Section 
 
This document is broken down into the following main sections. 
 
System Overview: Provides relevant details of the DMWA system and gives a brief 
description of the products generated by the algorithm. 
 
Algorithm Description: Provides a detailed description of the DMWA including its 
physical basis, its input and its output. 
 
Algorithm Outputs and Verification: Provides a description of the output data and 
verification of retrieved winds performance using correlative data sources. 
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Practical Considerations: Provides a description of algorithm programming and quality 
control considerations. 
 
Assumptions and Limitations: Provides an overview of the current limitations of the 
approach and gives the plan for overcoming these limitations with further algorithm 
development. 
 

1.4 Related Documents 
 
• GOES-R Functional and Performance Specification (F&PS) Document 
• GOES-R Ground Segment Mission Requirements Document (MRD) 
• Joint Polar Satellite System (JPSS) Level 1 Requirements Document Supplement 

(L1RDS) 
• Joint Polar Satellite System (JPSS) JPSS Level 1 Requirements - J2 Follow-On 

Document 
• Joint Polar Satellite System (JPSS) National Environmental Satellite, Data, and 

Information Service (NESDIS) Environmental Satellite Processing Center (ESPC) 
• Requirements Document (JERD) Volume 2: Science Requirements Document 

 

1.5 Revision History 
 
Version 0.1 of this document was created by members of the GOES-R winds algorithm 
development team and its intent to accompany the delivery of the version 1.0 derived 
motion winds algorithm to the GOES-R AWG Algorithm Integration Team (AIT). (May 
2008) 
 
Version 0.2 of this document was created by members of the GOES-R winds algorithm 
development team and its intent is to accompany the delivery of the version 3.0 derived 
motion winds algorithm to the GOES-R AWG Algorithm Integration Team (AIT). (June 
2009) 
 
Version 1.0 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong in response to internal AWG review items. This version of the ATBD still 
accompanies the version 3.0 of the derived motion winds algorithm to the GOES-R AWG 
AIT. (September 30, 2009) 
 
Version 1.1 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong and its intent is to accompany the delivery of the version 4.0 derived motion 
winds algorithm to the GOES-R AWG Algorithm Integration Team (AIT). (June 2010) 
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Version 1.2 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong and its intent is to accompany the delivery of the version 5.0 derived motion 
winds algorithm to the GOES-R AWG Algorithm Integration Team (AIT). (August 2010) 
 
Version 2.0 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong in response to internal AWG and STAR review items. This version of the 
ATBD still accompanies the version 5.0 of the derived motion winds algorithm to the 
GOES-R AWG AIT. (September 2010) 
 
Version 2.1 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong to reflect corrections/additional information as a result of technical interactions 
the winds team had with AER over the past year. (July 2012)  
 
Version 3.1 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong to update the section on the gross forecast difference test and the cloud top 
band 8 height assignment method. 
 
Version 3.2 of this document was created by Jaime Daniels, Wayne Bresky, and Steve 
Wanzong to detail the changes made to the algorithm to mitigate the impacts of the 
GOES-17 ABI Focal Plane Module (FPM) warming on the quality and generation of the 
G-17 wind products. 
 
Version 3.3 of this document was created by Jaime Daniels, Andrew Bailey and Americo 
Allegrino to update the outputs and verification section replacing pre-launch proxy data 
outputs (SEVERI and Simulated GOES-R data) with current operational data from 
GOES-16 and 17. 
 
Version 4.0 of this document was created by Jaime Daniels and Andy Bailey to update 
early sections of this ATBD to capture all geostationary and low earth orbiting satellites 
and instruments that the DMWA is applied to operationally at NOAA. This version also 
captures descriptions of the very latest updates to the DMWA and is considered the 
Enterprise version of the DMW Algorithm Theoretical Basis Document (ATBD). 
 
Version 4.1 of this document was created by Andy Bailey to update algorithm changes 
related to Satellite Zenith Angle and the addition of a QI (with no forecast term), ‘QINF,’ 
to the algorithm output. This version captures descriptions of the very latest updates to 
the DMWA and is considered the Enterprise version of the DMW Algorithm Theoretical 
Basis Document (ATBD).   
 
Version 4.2 of this document was created by Andy Bailey to include VIIRS shortwave 
infrared polar winds. 
 
Version 4.3 of this document was created by Andy Bailey to include processing enhanced 
(high spatiotemporal resolution) DMW datasets from GOES-16/18/19 MESO sector scans 
during Tropical Cyclone events for assimilation into the Hurricane Analysis and Forecast 
System (HAFS) model. 
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2 OBSERVING SYSTEM OVERVIEW 
 
This section will describe the products generated by NESDIS’ Enterprise Derived Motion 
Winds Algorithm (DMWA) and the requirements it places on the operational sensors.  

2.1 Products Generated 
The DMWA employs a sequence of images to arrive at an estimate of atmospheric 
motion for a set of targeted tracers viewed in selected spectral bands. These targets 
include well defined cloud edges or moisture gradients. Tables 1 provides the 
specifications for the derived motion winds product for each of the sensors used 
operationally at NESDIS.  
 
Table 1: Requirements for the Derived Motion Winds Product 
 
Derived Motion Winds Specification 
Geographic Coverage ABI:  Full Disk, CONUS, Mesoscale 

AHI:  Full Disk 
VIIRS: Poleward of 55 degrees latitude 
AVHRR-3: Poleward of 55 degrees latitude 

Vertical Resolution Cloud Motion Vector winds: At cloud tops; Clear-Sky 
Water Vapor winds: 200 mb 

Horizontal Resolution ABI: FD: 38km; CONUS: 38km; Meso: 38km 
          Enhanced HiRes MESO: 10km 
AHI: FD: 38 km 
VIIRS: 19km 
AVHRR-3: 19 km 

Mapping Accuracy ABI: 0.5 pixel 
AHI: 0.5 pixel 
VIIRS: 0.4 km (at NADIR); 1.5km (Edge of Scan) 
AVHRR-3: 0.5km  

Measurement Range Speed: 0-300 kts (3- 155 m/s) & Direction: 0 to 360 
degrees  

Measurement Accuracy Mean Vector Difference: 
7.5 m/s 

Refresh Rate/Coverage 
Time  

ABI (Mode 6): FD: “60 mins (based on a single set of 3 
sequential images 5 or more minutes apart); CONUS: 15 
mins; Meso: 5 minutes 
Enhanced HiRes MESO: 15 mins (based on a single set 
of 3 sequential images 1 minute apart) 
ABI (Flex Mode 3): FD: “60 mins (based on a single set 
of 3 sequential images 15 minutes apart) 
ABI (Mode 4): FD: “60 mins (based on a single set of 3 
sequential images 5 or more minutes apart); CONUS: 15 
mins (subsected from FD); Meso (subsected from FD): 5 
minutes 
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AHI: 10 mins 
VIIRS: Orbit (101 mins) 
AVHRR-3: Orbit (101 mins) 

  
VAGL (Mode 3 or 6) ABI: 806s 

AHI: 30 min 
VIIRS: 120 mins 
AVHRR-3: 120 mins 

Measurement Precision 4.2 m/sec 
 

Product Qualifiers 
Temporal Coverage Day and night 
Product Extent Quantitative out to at least 70 degrees LZA and 

qualitative beyond 
Cloud Cover Conditions Clear conditions down to feature of interest associated 

with threshold accuracy 
Product Statistics Over specified geographic area 

 

2.2 Instrument Characteristics  
 
The DMW algorithm will be applied to an array of GOES-R Series ABI, Himawari 
Series AHI, S-NPP and JPSS Series VIIRS, or Metop Series AVHRR-3 pixels belonging 
to a target scene to be tracked in time. Tables 2a-d summarize the channels used by the 
DMWA. 
 
Table 2a.  ABI Channel numbers, associated wavelengths, resolution, and  
channels used by the DMWA.   
 

 
Channel Number 

Central 
Wavelength (um) 

Nominal 
subsatellite 

IGFOV (km) 

Used in 
DMWA 

1 0.47 1  
2 0.64 0.5  
3 0.86 1  
4 1.38 2  
5 1.61 1  
6 2.26 2  
7 3.9 2  
8 6.15 2  
9 7.0 2  
10 7.4 2  
11 8.5 2  
12 9.7 2  
13 10.35 2  
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14 11.2 2  
15 12.3 2  
16 13.3 2  

Table 2b.  AHI channel numbers, associated wavelengths, resolution, and  
channels used by the DMWA algorithm. 
 

 
Channel Number 

Central 
Wavelength (um) 

Nominal 
subsatellite 

IGFOV (km) 

Used in 
DMWA 

1 0.47 1  
2 0.51 1  
3 0.64 0.5  
4 0.86 1  
5 1.61 2  
6 2.26 2  
7 3.9 2  
8 6.24 2  
9 6.94 2  
10 7.34 2  
11 8.59 2  
12 9.64 2  
13 10.41 2  
14 11.24 2  
15 12.38 2  
16 13.28 2  

 
 
Table 2c.  VIIRS channel numbers, associated wavelengths, resolution, and  
channels used by the DMWA algorithm. 
 

 
Channel Number 

Central 
Wavelength (um) 

Nominal 
subsatellite 

IGFOV (km) 

Used in 
DMWA 

M1 0.412 0.75  
M2 0.445 0.75  
M3 0.488 0.75  
M4 0.555 0.75  
M5 0.672 0.75  
M6 0.746 0.75  
M7 0.865 0.75  
M8 1.240 0.75  
M9 1.378 0.75  
M10 1.61 0.75  
M11 2.25 0.75  
M12 3.7 0.75  
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M13 4.05 0.75  
M14 8.55 0.75  
M15 10.763 0.75  
M16 12.013 0.75  
DNB 0.7 0.75 (across 

full scan) 
 

I1 0.64 0.375  
I2 0.865 0.375  
I3 1.61 0.375  
I4 3.74 0.375  
I5 11.45 0.375  

 
 
Table 2d.  AVHRR-3 channel numbers, associated wavelengths, resolution,  
and channels used by the DMWA algorithm. 
 

 
Channel Number 

Central 
Wavelength (um) 

Nominal 
subsatellite 

IGFOV (km) 

Used in 
DMWA 

1 0.630 1.08  
2 0.865 1.08  
3a 1.610 1.08  
3b 3.740 1.08  
4 10.8 1.08  
5 12.0 1.08  

 
 
 

3 ALGORITHM DESCRIPTION 
 
A complete description of the DMWA algorithm at the current level of maturity (which 
will improve with each revision) is provided in this section.  
 

3.1 Algorithm Overview 
 
The enterprise DMWA is based on the DMWA developed for the GOES-R ABI 
instrument (Bresky et al, 2013, Daniels et al, 2012). There are four basic steps involved 
in the process of generating DMWs for any satellite instrument: 
 
Step 1:  Obtain a set of at least three precisely calibrated, navigated and co-registered 
images (ie., L1b data) in a selected spectral channel.  
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Under nominal instrument operating conditions, this step is straightforward with the 
only conditions being the satellite, instrument channel, image times, and image 
sectors or granules to use. The GOES-17 operating conditions, however, are not 
considered nominal due to the ABI cooling system anomaly (Wang et al, 2020). As a 
result, the following DMWA mitigations are exercised when generating winds from 
GOES-17 ABI observations: 
 

• Read the ABI maximum Focal Plane Module (FPM) temperatures from the 
input L1b data (all three tracking images) and compare the warmest of the 
three values to a band-dependent FPM temperature threshold established for 
ABI bands 7-16.  

• If the ABI maximum FPM temperature associated with any of the three 
images exceeds the temperature threshold for that band, the DMWA 
processing is terminated after the creation of an output file with zero good 
winds.  

• In the case of band 14, if the FPM temperature threshold is exceeded for any 
of the three images, a backup set of band 13 images may be used as a 
replacement, provided the maximum FPM temperature is below the specified 
ABI band 13 FPM temperature threshold. 

Step 2:  Locate and select a set of suitable target scenes in the middle image domain 
 

A target scene is represented by an NxN array of pixels that defines a suitable 
feature in the image whose movement can be tracked in time. The size of this 
array is a function of the spatial and temporal resolution of the imagery and the 
scale of the intended feature to be tracked. Both cloudy and clear target scenes are 
selected by the DMWA. One of the challenges of deriving atmospheric motion 
winds operationally from satellites is to determine and utilize imagery taken at 
frequencies appropriate to the scales resolvable by operational numerical weather 
prediction systems, while at the same time, meeting production demands that 
require routine full disk coverage. 

 
Step 3:  For each image pair in the image triplet, use a correlation algorithm to derive the 
motion most representative for the target scene  
 

When tracking cloudy target scenes, a correlation algorithm is used in conjunction 
with a nested tracking algorithm where the following steps are performed: 
 

• Apply the correlation algorithm to smaller sub-targets within each target scene 
in order to derive a set of local motion vectors for each target scene  

• Analyze the local motion field with a cluster analysis algorithm in order to 
extract the dominant motion within the target scene.  

• Assign a height to the derived winds using pixel level information (obtained 
from running a precursor cloud algorithm) from the dominant cluster.  



 21 

When tracking moisture gradients in clear target scenes, the nested tracking algorithm 
is disabled and the following steps performed: 
 

• Assign a height to the tracer using a cold sample of pixels. 
• Apply the correlation algorithm to the entire target in order to arrive at a 

motion vector 
• Average the vectors derived from each of the image pairs to arrive at the final 

set of DMWs 

Step 4:  Perform quality control on the DMWs and assign quality indicators to each of 
the DMWs.  

 
Quality control of retrieved DMWs is done via the application of numerous target 
selection, feature tracking, and height assignment error checks and via calculation 
of quality indicators for each retrieved DMW. The  
 
In addition to the DMW quality control procedures described above, the DMWA 
captures mitigation processing conditions when processing winds from the 
GOES-17 ABI. More specifically, the winds product Data Quality Flag (DQF) 
captures the DMWA mitigation condition for band selection used in the feature 
tracking step and the mitigation condition taken by the upstream cloud height 
algorithm to produce cloud heights (used to assign heights to DMWs).   

 
 

3.2 Processing Outline 
 
In order to estimate motion, one must have a sequence of images separated by some, 
preferably fixed and relatively short, time interval. The DMW algorithm described here 
uses a sequence of three images to compute a pair of vector displacements (one for an 
earlier time step and one for a later time step) that are averaged to obtain the final motion 
estimate. The DMWA uses the middle image to perform the initial feature targeting, then 
searches the before and after images for traceable (coherent) features to derive motion 
estimates.  
 
For geostationary satellite winds processing the image sectors are fixed with coverage 
defined by FD, CONUS, or Meso sectors. For low earth orbiting satellites polar winds 
processing, three sequential orbital images (remapped to a polar stereographic projection) 
are used and winds are generated in the area where these three orbits overlap. Figure 1 
illustrates the overlap (gray area) area associated with three sequential orbits where winds 
can be generated. 
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Figure 1. Three sequential orbits used in polar winds processing. The gray region 
represents the overlap in three sequential orbits where the polar winds can be derived. 
 
The basic processing outline for the DMWA is summarized in Figure 2. The algorithm is 
designed to run on segments of data provided by the framework and consisting of 
multiple scan lines. Processing begins after a data buffer containing the brightness 
temperature values from three consecutive images is filled. The data buffer also contains 
output from the cloud mask and cloud height algorithms (coincident with the time of the 
middle image of the image triplet) which must execute before the DMWA.  
 
Once the data buffer is full, the middle portion of the buffer is divided into small “target” 
scenes NxN pixels and each scene is analyzed to determine if it is a suitable tracer. Only 
the brightness temperature field from the middle image time is processed for targets and 
it is these targets that will be tracked over time to derive the motion. Processing only the 
middle portion of the buffer allows for the features to drift over time but still remain 
within the domain of the buffer. Within each target scene, the algorithm locates the 
strongest 2-D gradient in the brightness temperature field and re-centers the NxN target 
scene at this location. A brightness temperature gradient threshold is used to prevent 
target selection on very weak gradients. 
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After the target scene is re-centered on the maximum gradient, tests are performed to 
determine whether or not the scene would be a suitable tracer. These tests eliminate target 
scenes that lack the gradients necessary to track reliably while also removing scenes that 
are suspected to contain multiple cloud layers. 
 
If a potential tracer makes it through the target quality control, a search region, much 
larger in size than the target scene, is defined in each of the tracking images. At this 
point, depending on the channel being processed, one of two tracking strategies is 
employed. Both strategies use the Sum of Squared Differences (SSD) similarity measure 
to locate the target scene in the preceding and succeeding images. 
 
When processing cloud-top features from the 0.65, 3.9, 6.2, or 11.2um channels, a 
tracking strategy called nested tracking is used to estimate motion. In this approach, a 
small 5x5 pixel box is “nested” within the outer target scene and a local motion vector is 
derived at each interior pixel. A 2-pixel offset is used near the boundary of the outer 
target scene. The field of local motion vectors that results is then analyzed with a cluster 
analysis algorithm to find the dominant motion. The dominant motion is computed by 
averaging the displacements associated with the largest motion cluster found by using a 
cluster analysis algorithm.  The wind vector is then assigned a representative height after 
examining the cloud top pressure or brightness temperatures associated with the pixels in 
the largest cluster.  When processing the visible, SWIR or LWIR channels, a median 
cloud top pressure is found by examining the cloud-top pressure values of all pixels in the 
largest cluster. When processing one of the three water vapor channels the height 
assignment process is slightly different.  Here, the water vapor channel brightness 
temperature values are examined and a median temperature is found from the pixels in 
the largest cluster. The median brightness temperature is then compared to a GFS forecast 
temperature profile to find the pressure where the two values agree. The pressure at 
which these two values agree serves as the representative height of the derived motion 
wind. 
 
When processing the clear sky portions of a water vapor (6.2um, 7.0um or 7.3um) image, 
the strategy for tracking features is more conventional. For these cases, the target is 
assigned a height before it is tracked. The height is computed using a sample of pixels 
from the coldest portion of the scene. After the target is assigned a height, a search is 
performed to find the closest match of the target in the preceding and succeeding images 
in the image triplet. This conventional approach produces a single motion vector 
associated with the motion of the entire target scene.  
 
Both tracking approaches use a forecast wind (from the center of the target scene) to 
locate and place the center of the search region in the next image. This practice of using 
the forecast to “guide” the search serves two purposes. First, it reduces the number of 
“false positives” in the tracking step. Secondly, it minimizes the computational expense 
of the search.   
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During the tracking process, correlation thresholds are applied to screen out false 
positives. When nested tracking is employed, only matching scenes possessing a 
correlation score of 0.8 or higher (1.0 is perfect) are allowed to influence the final 
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 Figure 2.   High Level Flowchart of the Derived Motion Wind Algorithm. 
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solution. For conventional tracking, where nested tracking is not invoked and the larger 
target scene is tracked, the correlation threshold is reduced to 0.6. 
 
Two sub-vectors are generated in the tracking process, one vector for the backward time 
step and one vector for the forward time step.  Accelerations between sub-vectors 
exceeding a user defined threshold (5 or 10 m/s depending on band) are not permitted 
(vectors are discarded). In addition, gross errors in the height assignment and tracking 
estimates are removed by comparing the satellite-derived motion wind to a numerical 
forecast wind and discarding those satellite-derived wind vectors which differ 
significantly from the forecast wind.  These gross error thresholds are band-dependent. 
 
Once the last line segment is processed, the entire set of derived winds undergoes a more 
rigorous quality control process. Two related algorithms will make up the Automatic 
Quality Control (AQC) of the GOES-R DMW processing.  The first one is the 
quality indicator (QI), based on work done at EUMETSAT (Holmlund, 1998).  The 
second is the Expected Error (EE) principles developed at the Bureau of Meteorology, 
Australia (LeMarshall et al. 2004). 
 
As noted in Section 3.1, special mitigation processing takes place when G17 data is 
processed to generate winds. This begins with extracting the maximum ABI FPM 
temperature from each of the three tracking images and comparing them to the 
appropriate ABI FPM temperature threshold. Winds processing is terminated if the 
threshold is exceeded and an empty output file is created with zero good winds. The G17 
ABI band-dependent FPM threshold temperatures are shown in Table 4. 
 
Table 4. G17 focal plane temperature thresholds used by the DMW algorithm. 
 

Channel 
Number 

Center 
Frequency (µm) 

Temperature 
threshold (K) 

7 3.89 150 
8 6.17 93 
9 6.93 93 
10 7.34 90.5 
13 10.33 100 
14 11.2 93 

 
In addition to checking the focal plane temperatures of the tracking images, the DMW 
algorithm also checks to see if the upstream cloud height algorithm is using a mitigated 
set of channels to derive the cloud height instead of the nominal bands (14, 15 and 16). 
When this occurs, the DMW algorithm uses the mitigated cloud heights, but flags every 
wind with a unique product quality value (DQF= -2). Because the threshold temperature 
for band 13 is higher than the threshold for band 14, the algorithm allows band 13 to be 
used as a backup to band 14 if the maximum focal plane temperature is below the band 
13 threshold. When a set of band 13 images is used in place of band 14 this condition is 
indicated by a unique product quality value (DQF= -1). 
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It should be noted that the visible band (ABI band 2) from G-17 is not impacted by the 
ABI focal plane warming issue so tracking is unaffected for this band. However, because 
the visible winds rely on cloud heights from the upstream cloud height algorithm, their 
quality can be impacted by the use of a mitigated set of channels to assign the height.  
 
 

3.3 Algorithm Input 
 
This section describes the input needed to process the DMWs.  While the DMWA uses 
information at the pixel level (e.g., cloud mask, cloud height), the derived motion is 
representative of a group of pixels (i.e., a scene within a target box of size NxN pixels). 
The DMWA is currently designed to process winds only after a data buffer has been 
filled with brightness temperature data from all three images in the tracking sequence. 
Cloud height and cloud mask information for the middle image time is also required. The 
buffer must be large enough to capture the motion of features up or down in the image. 
Consequently, the DMWA processes only a portion of the buffer (a middle strip the same 
width as the target box size) for suitable tracers. Processing proceeds from west to east 
until the satellite zenith angle exceeds 70⁰, the earth edge is encountered or no more 
elements exist in the line segment.  The process is repeated until the number of lines 
remaining in the line segment is smaller than the number of lines that make up the target 
scene. At this point the extra lines are saved in the buffer and control is returned to the 
framework until the next line segment is read into memory. The following sections 
describe the actual input needed to run the DMWA. 
 

3.3.1 Primary Sensor Data 
 
The list below contains the primary sensor data to be used by the DMWA.  By primary 
sensor data, we mean information that will be derived solely from the ABI observations 
and geolocation information.  The sensor data is used at it original resolution. 
 

• Calibrated and navigated radiances for ABI channel 14 (11.2um) for the middle 
image time of the loop sequence.  

• Calibrated and navigated reflectances (percent) for ABI channel 2 (0.64um) and 
brightness temperatures for ABI channels 7 (3.9um), 8 (6.15um), 9 (7.0um), 10 
(7.4um), and 14 (11.2um) for three consecutive images. 

• G-17 maximum focal plane temperature 

3.3.2 Ancillary Data 
 

The following list briefly describes the ancillary data required to run the DMWA.  By 
ancillary data, we mean data that will require information not included in the ABI 
observations or geolocation data. 
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Land mask / Surface type 
 
A land mask file is needed such that each ABI pixel can be classified as being over 
land or water. The details of the dataset that contains this information and the 
procedure for spatially mapping it to the ABI are described in detail in the Algorithm 
Interface and Data Description (AIADD) Document. 

 
DMWA configuration file 
 
A configuration file is needed to set six variables within the DMWA processing 
algorithm: 

 
• GOES-R ABI channel number – Channel number to use for feature tracking  
• Time step between images  
• Target box size – In pixel space 
• Nested tracking flag – to enable or disable nested tracking. 
• Expected Error (EE) filter flag 
• Clear-sky WV flag – to enable or disable clear sky processing. 

 
Numerical Weather Prediction (NWP) Forecast Data 

 
Short-term forecast temperature and wind data on pressure surfaces from National 
Centers for Environmental Prediction’s (NCEP) Global Forecast System (GFS) model 
are used to calculate target heights and for calculating model shear and model 
temperature gradients used in the Expected Error algorithm described in Section 
3.4.2.4.2. Details concerning the preprocessing of NWP forecast data can be found in 
the AIADD Document. 
Short-term GFS forecast wind profiles are also used to center the search box on the 
predicted locations of targeted features being tracked in the first and last images of the 
loop sequence 

 
Expected Error Coefficients File 
 
A set of regression coefficients corresponding to a number of predictors used to 
compute the Expected Error quality flag that is appended to each DMW that is 
computed. The details of this approach are described in Section 3.4.2.4.2.  

 
Automated Tropical Cyclone Forecast best-track File (for enhanced HiRes DMW 
processing only) 
 
Automated Tropical Cyclone Forecast (ATCF) best-track files (aka “b-deck”) files. 
The b-deck files contain official synoptic hour positions of TCs in comma delimited 
format and indicate the best position known at synoptic time. The enhanced HiRes 
DMW processing makes use of these synoptic hour positions to determine if any of the 



 29 

current GOES MESO sectors from GOES-16 and 18 (M1 and M2) are geolocated with 
any current storms being tracked by NHC.  

 

3.3.3 Derived Data 
 
This section lists the input data that must be derived before the DMWA is executed.  The 
output of several upstream cloud product algorithms from the GOES-R AWG cloud team 
are used in the DMWA derivation process and include the following: 
 
Cloud Mask 
 
The cloud mask is used by the DMWA as part of the cloud amount test when selecting 
which target scenes to process. It is also used to screen out pixels that do not have a cloud 
top pressure associated with them.  
 
Cloud top pressure, cloud top pressure quality, and cloud top temperature 
 
This information is used by the DMWA to assign a representative height to the target 
scene being tracked. 
 
Cloud top height and temperature error estimates 
 
Low level inversion flag 
 
This information is used by the DMWA to assign a representative height to the scene 
being tracked within a GFS model designated low-level inversion. 
 
Solar zenith angle 
 
This information is used by the DMWA to determine day/night pixels. 
 
Satellite zenith angle 
 
This information is used by the DMWA to determine geographic coverage limits based 
on the sensor viewing angle.  
 
 
 

3.4 Theoretical Description  

3.4.1 Physics of the Problem – Estimation of atmospheric flow 
from motions in sequential satellite imagery 

This section discusses the theory behind the challenge of estimating atmospheric flow 
from motions in sequential satellite imagery. Atmospheric motion is determined through 
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the tracking of features in time. Identifying features to be tracked is the first step in the 
process. These features can be clouds, or in the case of clear-sky conditions, moisture 
gradients.  
 
The DMWA uses the ABI visible and infrared observations shown in Table 3 to extract 
atmospheric motion. The choice of spectral band will determine the intended target 
(cloud or moisture gradient) to be tracked, its height in the atmosphere, as well as the 
scale of its motion.  Historically, the coverage of operational GOES DMWs is diurnally 
consistent in the mid- to upper tropospheric levels (100–600 hPa) through the use of the 
mid-wave (6.7um – 7.3um) water vapor channels and longwave (10.7um) infrared 
(LWIR) channel for deriving vectors. In the lower levels (600–950 hPa), DMWs are 
provided by a combination of the visible (VIS) and IR channels, depending on the time of 
day. During daylight imaging periods, the VIS channel usually provides superior low-
level tracer detection than the LWIR channel due to its finer spatial resolution and 
decreased susceptibility to attenuation by low-level moisture. During night-time imaging 
periods, the shortwave (3.9um) infrared (SWIR) channel compliments the LWIR channel 
to derive DMWs. The SWIR channel is a slightly “cleaner” window channel than the 
LWIR (less WV attenuation), making it more sensitive to warmer (lower tropospheric) 
temperature features (Dunion and Velden, 2002). The SWIR channel is also not as 
sensitive as the LWIR channel to cirrus clouds that may obscure low-level cloud tracers. 
These two characteristics make it a superior channel for producing low level DMWs at 
night. 
 
As described previously, each target is an NxN array of instrument measurements (scene) 
that encapsulate a suitable feature whose movement is tracked in time. The size of this 
array is a function of both the spatial and temporal resolution of the imagery and the scale 
of the intended feature to be tracked. Generally speaking, a small target box yields a 
noisier motion field than one generated with a larger target box. Conversely, if the target 
scene is too large, the algorithm will tend to measure the mean flow of the pixels in the 
target scene (i.e. a spatial average of several motions) rather than the intended 
instantaneous wind at a single point. These considerations need to be kept in mind when 
choosing the optimal target box size.  
 

3.4.1.1 Target Selection 
 
The objectives of the target selection process are to select high quality target scenes that: 
i) capture the intended target (i.e., clouds or clear-sky water vapor gradient), ii) contain 
sufficient contrast, and iii) do not contain a mix of multi-layered clouds. Target scenes 
that possess these characteristics are more amenable to precision tracking and height 
assignment that result in more accurate atmospheric wind estimates.  
 
Target scenes are centered at pixel locations where the magnitude of the brightness 
temperature gradient is large. In other words, these target scenes are centered over cloud 
edges or tight moisture gradients in clear-sky conditions. To assure that only high quality 
targets are selected, all potential target scenes first undergo a spatial coherence and 
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cluster analysis (Coakley & Bretherton, 1982) check.  The primary goal of this analysis is 
to identify the presence of a coherent signal in the target scene that indicates a dominant 
single layer cloud in the target scene. The spatial-coherence method attempts to identify 
the presence of cloud layers in each target scene by identifying the portions of the region 
that exhibit a high degree of local uniformity in the pixel-level emitted radiances. A high 
degree of uniformity will exist for regions that are cloud-free or for regions completely 
covered by cloud at a uniform height. For targets that are not completely covered by 
clouds, the emitted radiances can vary significantly from one pixel to the next.   
 

3.4.1.1.1 Spatial Coherence and Cluster Analysis Methods 
 
The starting point for spatial-coherence and cluster analysis methods is the model of a 
well-defined, single-layered system of clouds situated over a relatively uniform 
background. What is meant by the term “well-defined” and “relatively uniform” will be 
explained below. The emitted radiance observed by a radiometer viewing such a system 
is given by 
 
   I = (1 – C)Ics + C(εcldIcld + tcldIcs)                                                   (1) 
 
where I is the emitted radiance, C is the fractional cloud cover for the field of view, Ics is 
the radiance associated with the cloud-free portion of the field of view, i.e. the radiance 
observed when C = 0. εcld is the mean effective emissivity associated with the cloud layer, 
tcld is the mean transmissivity, and Icld is the radiance that would be observed for overcast 
regions, i.e. C = 1, if the clouds were black at the wavelength of observation. The emitted 
radiance, I, is assumed to be at an infrared (IR) window wavelength so that downward 
emission above the cloud can be neglected. Likewise, the surface is assumed to be black 
at the wavelength of observation so that all radiation incident on the surface is absorbed, 
especially that emitted downward by the cloud. It is assumed that no radiation is reflected 
by the surface. Over a relatively small region the emission of the clear-sky background, 
Ics, and the height of the cloud layer, and therefore Icld, are assumed to have little 
variance. That is, the effects of variations in the thermal emissions associated with the 
clear-sky background and the height of the cloud layer are small when compared with the 
effects caused by variations in the fractional cloud cover and the cloud optical properties. 
If these conditions are met, the background is said to be relatively uniform and the layer 
is said to be well-defined. From (1), the variance of the radiances under such conditions 
is given by: 
                            _             _                    ___                      ___ 
  (I–I)2 =[(C–C)Ics+(Cεcld – Cεcld)Icld+(Ctcld – Ctcld)Ics]2                               (2) 
 
The variances of emitted radiances over small areas spanning several image pixels is the 
key to identifying the portions of a region that are cloud-free or overcast by clouds in a 
well-defined layer. The variance approaches zero when the mean cloud cover in a region 
approaches zero. If the mean cloud cover is zero, then the fractional cover in every pixel 
is also zero (i.e. C=C =0). Where the clouds become sufficiently extensive so that several 
image pixels are overcast, then for analogous reasons, the variance approaches zero 
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because C=C =1. Often when cloud systems become sufficiently extensive that they 
cover several image pixels, they also become opaque. A notable exception can be cirrus. 
For opaque, overcast clouds the variance again becomes zero because ticld = tcld = 0 and 
εicld =   εcld = εcldmax. , where, tcld is the cloud transmissivity and εcldmax is the emissivity that 
the clouds obtain when they become opaque (i.e., where rcldmax is the reflectivity). When 
pixels become overcast with opaque clouds, the variance in emitted radiances also 
becomes zero. When pixels become overcast by semitransparent clouds, like cirrus, pixel-
to-pixel variations in the cloud optical properties, i.e. εcld and tcld, prevent the variance 
from dropping to zero. Because clouds appear to vary incoherently on the ~1 km × 1 km 
scale available to current satellite imagers, (2) indicates that variances in the emitted 
radiances for regions that are covered by several image pixels will be nonzero when the 
region contains broken cloud. The variability will be caused partly by differences in the 
fractional cloud cover from pixel to pixel and partly by variations in the average cloud 
optical properties from pixel to pixel. The spatial-coherence method identifies pixels that 
are overcast by layered clouds where the clouds become opaque, and pixels that are 
cloud-free by relying on the near-zero variances in emitted radiances for localized 
collections, or clusters, of the pixels. Collections of pixels that are partly covered by 
clouds or are overcast by clouds that are semitransparent invariably exhibit relatively 
larger variances. The application of a simple threshold on the variance of emitted 
radiances over local sub-regions within each target scene is performed as part of the 
target selection process in order to identify coherent pixels representative of cloud 
features and the surface.  
 
The cluster analysis method is designed to filter out hard to track multi-layered cloud 
scenes. It is related to the spatial coherence method in that it starts with the same radiance 
information (mean and standard deviation values for small sub-regions of the target box), 
but takes the analysis further to determine if more than one cloud layer is present in the 
target scene. This analysis involves constructing a histogram of pixel level radiance 
values within the target scene and then identifying the clusters of warm and cold samples 
that are assumed to correspond to the surface and the elevated cloud layer, respectively. 
A second cloud layer is assumed to exist in the target scene if more than a pre-determined 
percentage (20%) of the radiance values fall outside of the two clusters of warm and cold 
samples. If a second cloud layer is determined to exist, the target scene is rejected as a 
suitable target for feature tracking.    
 
Further details about how both of these tests are applied are provided in Section 3.4.2.1.1. 
NOTE: The spatial coherence check is NOT applied when processing the Tropical  
Cyclone high-resolution GOES MESO sector winds. 
 

3.4.1.2 Feature Tracking 
 
If a target scene survives the selection criteria, then attempts to track this target in the 
image sequence can commence. Feature tracking involves coherent tracking of clouds or 
water vapor features over a specified time interval. A key assumption made in this 
process is that cloud or water vapor features are passive tracers that move with the 
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ambient wind flow. Of course, it is understood that cloud tracers (in particular) are not 
always passive. There may be growth, decay, or change in cloud top height over the time 
interval being assessed. Further complicating matters is the fact that some clouds do not 
move with the wind (i.e. wave clouds) while others track with the wind at a level lower 
than cloud top (i.e. marine cumulus). Therefore, it is important to apply robust quality 
control to remove retrieved DMWs that are in error as a result of these complicating 
factors (discussed in Section 3.4.2.4). 
 
Clouds grow and decay with lifetimes that vary with their size and location (i.e., land 
versus ocean). To be effectively tracked, the lifetime of the tracer must be at least as long 
as the time interval of the image sequence used. The resolution of the imagery is also an 
important consideration when tracking features in satellite imagery. Merill (1989) and 
Schmetz et al. (1993) discuss this at length. It is important that the size of the target scene 
(spatial resolution) is consistent with the temporal resolution of the imagery in order to 
capture the scale of the intended feature being tracked. For example, estimation of low 
level winds over land is improved by using smaller target scenes and higher temporal 
resolution imagery. Early work by Hamada (1983) suggested that the temporal resolution 
of images should be less than 15 minutes in order to accommodate the short lifetime and 
rapid deformation of cloudy tracers over land. Shenk (1991) suggested that the temporal 
resolution needed to properly track low level cumulus over land was in the range of 10 
minutes to less than a minute. More recently, Velden et al. (2000) experimented with 
special GOES-10 rapid scan imagery to determine the optimal temporal resolution to use 
for different spectral channels. A general finding, that was not unexpected, was that a 
higher number of high quality winds can be derived with decreasing time intervals and 
increasing spatial resolution.  
 
A critical factor that has a significant impact on the quality of the derived winds, 
especially at higher temporal resolutions, is the image registration; that is, the stability of 
the image-to-image navigation. If the stability of the image-to-image navigation is poor 
for an image sequence, the result will be added noise to the tracking process and poor 
quality DMWs. Furthermore, use of imagery with high temporal resolution, but coarse 
spatial resolution, can result in poor quality DMWs. This is especially true for small 
tracer displacements (i.e., low wind speeds) where image registration uncertainties will 
dominate the resulting true displacements.  
 
Jedlovek and Atkinson (1998) discuss the development of a Tracking Error Lower Limit 
(TELL) parameter,ℑ , that provides guidance for understanding the trade-offs between 
spatial and temporal resolution for varying image registration performances. The TELL 
parameter is given by: 
 
          t/)2/( ρ+ℜ=ℑ                                                             (3) 
 
where: ℜ  is the image registration accuracy, ρ  is the image spatial resolution, and t is 
the image separation interval. Figure 3 shows the magnitude of the TELL parameter for 
various values of the image registration accuracy and image separation. 
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Figure 3. Tracking Error Lower Limit (TELL) is a function of image registration 
accuracy and image separation time. (Jedlovek and Atkinson, 1998) 
 
Small values of TELL (small wind errors) are achieved with good image registration, 
high resolution data, and relatively large image separation times. However, for 
atmospheric applications where trackable features change considerably over a short 
period of time, large separation intervals are not desirable, making values of image 
resolution and registration accuracy critical parameters in DMW accuracy. 

3.4.1.3 Target Height Assignment 
 
Assigning a representative height to each cloudy target is achieved by processing pixel-
level cloud heights, derived via the GOES-R ABI cloud height algorithm, within the 
target scene. A detailed description of the GOES-R ABI cloud height algorithm can be 
found in the GOES-R ABI Cloud Height Algorithm Theoretical Basis Document. For 
clear-sky water vapor targets, NCEP GFS forecast temperature profiles are used as 
ancillary data and compared to brightness temperatures calculated from the clear-sky 
water vapor channel brightness temperatures. The pressure height is determined as the 
level where the brightness temperature fits the forecast temperature. 
 
Target height assignment is considered to be the major source of error for DMWs. A 
perfectly tracked feature can be rendered useless if it is assigned to the wrong level in the 
atmosphere. There is also the consideration of how well the final wind actually represents 
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the local wind field at a singular location, height (level) and time. Some clouds do not 
move with the wind while others follow the wind at a level lower than the cloud top. 
Additionally, DMWs tend to represent the movement of a layer of the atmosphere, as 
opposed to the movement of the atmosphere at a particular level (Velden and Bedka 
2009).  
 

3.4.2 Mathematical Description 
 
The GOES-R DMWA approach to derive an individual vector consists of the following 
general steps, each of which is described in detail in the following sections.  
 
• Locate and select a suitable target in second image (middle image; time=t0) of a 

prescribed image triplet 
• Assign an estimated representative height to the target 
• Use a pattern matching algorithm to locate the target in the earlier and later image. 

Track the target backward in time (to first image; time=t-Δt) and forward in time (to 
third image; time=t+Δt) and compute corresponding displacement vectors. Compute 
the mean vector displacement from the two displacement vectors and assign this final 
DMW to time = t0. 

• Perform quality control procedures on the DMW to edit out or flag suspect vectors. 
Compute and append quality indicators to each DMW 

 

3.4.2.1 Target Selection 
 
Targets are selected from the middle image of the sequence. The size of each target scene 
will depend on the channel being processed and the scale of the motion being estimated. 
The target scene is traditionally a square with sides of equal length (in pixels). Table 5 
summarizes the target scene size and image time separation interval to be employed for 
each instrumental channel used to derive DMWs.  It should be noted that the horizontal 
resolution of the DMW product is driven by the size of the target scene used.  
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Table 5. Summary of target scene sizes and image time intervals that should be used to 
derive DMWs for pertinent instrument channels. 
 

Channel 
Number 

Target Scene Size 
(Image lines x 

elements) 

Image Time 
Interval (mins) 

ABI 

2 

Nominal Res: 
15x15 

 
 

Nominal Res: 
Full disk:   5, 10, or 15 
CONUS:    5 
Mesoscale: 5 
 
Enhanced HiRes Meso: 1 

7 

Nominal Res: 
15x15 

 
 

Full disk:   5, 10, or 15 
CONUS:    5 
Mesoscale: 5 
 
Enhanced HiRes Meso: 1 

 
8 (cloudy targets) 

 
---------------------- 
8 (Clear targets) 

Nominal Res: 
15x15 

 
------------------------- 

 

Full disk:   5, 10, or 15 
CONUS:    5 
Mesoscale: 5 
 
Enhanced HiRes Meso: 1 
------------------------- 
FD, CONUS, Mesoscale: 30 

9 15x15 FD, CONUS, Mesoscale: 30 
10 15x15 FD, CONUS, Mesoscale: 30 

14 

Nominal Res: 
19x19 

 
 

Full disk: 5, 10, or 15 
CONUS: 5 
Mesoscale: 5 
 
Enhanced HiRes Meso: 1 

AHI 
3 15x15 Full disk: 10 
7 15x15 Full disk:  10 

8 (cloudy targets) 
---------------------- 
8 (Clear targets) 

15x15 
Full disk:  10 
------------------------- 
Full Disk: 30 

9 15x15 Full Disk: 30 
10 15x15 Full Disk: 30 
14 19x19 Full disk: 10 

VIIRS 
M11 15x15 Orbital: 101 
M15 19x19 Orbital: 101 

AVHRR-3 
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4  Orbital: 101 
 
 
Before the target selection process begins, the brightness temperature gradient magnitude 
for each pixel location is computed from equation (4).  
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                          BT is the pixel level channel brightness temperature 
                          Ele refers to an image column 
                          Line refers to an image row 
 
   
Figure 4 shows an example of a brightness temperature gradient image (right side) 
derived from brightness temperatures (left side) for the GOES-12 imager. The dark areas 
on the right side of Figure 3 indicate locations where the magnitudes of the brightness 
temperature gradients are large. These locations exist on the edges of clouds and in the 
interior of cloud systems where cloud structure exists. It is in these locations where 
potential acceptable targets are expected to be found. The white boxes shown on the left-
side of Figure 3 show the original target scene locations and the yellow dots show the 
location of the maximum gradient magnitude in each of these target scenes. The center of 
every target scene is then repositioned at the pixel containing the maximum gradient 
magnitude. If the same gradient value occurs in multiple pixels within a target scene, then 
the first occurrence of the maximum gradient value is the one chosen. The repositioned 
target scenes are shown in green. The intent of repositioning the target scene at the  
 

 
Figure 4. Image of 11um brightness temperature (left) and the 11um brightness 
temperature gradient (right). The white boxes show the target scenes at their original 
locations. The green boxes show the target scenes which have been repositioned at the 
pixel location containing the maximum brightness temperature gradient as indicated by 
the yellow dot. 

 where:    Wk =    -1/12, 8/12, 0, -8/12, 1/12     ; for k= -2 to 2 
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3.4.2.1.1 Target Selection Tests 
 
All of the potential target scenes undergo a series of quality control tests to determine if 
the target is a suitable tracer. These ‘target selection’ tests are described below. If a target 
fails any one of these tests, the target is determined to be a non-suitable tracer and is 
flagged. Each failure is associated with a unique “flag” value which is saved in the DMW 
output file. These values are shown in Table 6. 
 

Table 6.  Derived Motion Winds Algorithm Failure Codes. 
 
Derived Motion Wind Quality Control Codes 
Data Quality 
Flag (DQF) 

Definition 

-3 Good wind, but an alternative channel (band 13) used for feature tracking and an 
alternative set of channels used for the determination of cloud-top height/AMV height  

-2 Good wind, but an alternative set of channels used for the determination of cloud-top 
height/AMV height assignment  

-1 Good wind, but an alternative channel used for feature tracking  
0 Good wind 

Internal Quality 
Flag Failure 

Codes 
Definition 

1 Maximum gradient below acceptable threshold 
2 Target located on earth edge or Satellite Zenith Angle greater than 70⁰ 

3 Cloud amount failure (less than 10% cloud cover for cloud track winds or greater than 
0% cloud cover for water vapor clear-sky winds) 

4 Median pressure failure 
5 Bad or missing brightness temperature in target scene 
6 Multiple cloud layers present 
7 Target scene too coherent (not enough structure for reliable tracking) 
8 Tracking correlation below 0.6 (not used for nested tracking) 

9 u-component acceleration greater than 10 m/s (5 m/s for visible) 

10 v-component acceleration greater than 10 m/s (5 m/s for visible) 
11 u- and v- component accelerations greater than 10 m/s (5 m/s for visible) 
12 Derived wind slower than 3 m/s 
13 Target scene too close to day/night terminator (visible and SWIR only) 

14 Median pressure used for height assignment outside acceptable pressure range 
(channel dependent) 

15 Match found on boundary of search region 
16 Gross difference from forecast wind (channel dependent) 

17 
Median pressure (used for height assignment) of largest cluster for first image pair is  
too different from median pressure of largest cluster for second image pair – only 
valid for nested tracking  

18 Search region extends beyond domain of data buffer 
19 Expected Error (EE) too high 
20 Missing data in search region 
21 No winds are available for the clustering algorithm 
22 No clusters were found 

Catastrophic Failures 
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Invalid time interval 
Temporal data not available 
Line segment swath too small (must contain at least the same number of lines as target box size specified in 
the Winds Configuration File. 
Search region size is less than the target scene size 
 
 
maximum gradient is twofold. First, it focuses the target scene on a strong feature that is 
expected to be effectively tracked over time. Secondly, it establishes a link between 
pixels containing the feature being tracked and the pixels contributing to its height 
assignment (discussed later). Repositioning of the target scenes can result in an irregular 
spatial distribution of target scenes, and hence, an irregular spatial distribution of the 
DMW product. The white arrows indicate the direction of the image processing, which 
begins at the top left of the image and moves left to right along the image and then 
downwards.  
 
Table 6 describes every possible failure code from the initial target selection step through 
the final QC process. Because target selection is the first step in the AMV derivation 
process the tests associated with it are described first. The target selection tests are 
applied in the following order: 
 

1. Zero gradient check 
2. Proximity to day/night terminator check 
3. Earth edge test (no space pixels allowed)  
4. Satellite zenith angle test  
5. Fractional cloud cover/clear sky test 
6. Note: when processing the upper-level water vapor channel for clear-sky 

tracers pixels with low-level clouds (CTP >= 600 mb) are considered clear. 
7. Contrast test – channel dependent 
8. Channel validity test 

Quality control check #6 is the extent of target QC for WV processing 
 
Additional target QC performed for visible, SWIR and LWIR winds: 

9. Spatial coherence check 
10. Multi-layer cloud check 

If a target scene fails test #1 the next adjacent target box is processed. 
If a target fails any of the 2-10 tests the box is shifted by ½ the width of the target box. 
 
Zero gradient Test 
 
If the maximum gradient found in the target scene is zero the target is discarded and the 
next adjacent box is processed. 
 
Contrast Test 
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Each target scene is required to contain sufficient contrast, which is computed from the 
range of channel measurements (brightness temperature or reflectance percent) within the 
target scene. The contrast threshold used is channel dependent and is the product of the 
contrast constant (shown in Table 7) and the ratio of the target scene size used (see Table 
5) and the nominal target scene size (nominal resolution: 7 or 15; high res MESO: 5).  
                 
  
 
Table 7. Contrast constants and thresholds used for target selection. 
 

Channel 
Number 

 
Contrast 
Constant 

 
Contrast Threshold 

ABI 
2 (nominal res) 12% (reflectance) 12% 

2 (high res MESO) 1% (reflectance) 3% 
7 3K 6.43K 

8 (clear-sky) 1K 1K 
8 (nominal res cloud-top) 2K 2K 

8 (high res MESO cloud-top) 1K 3K 
9 1K 1K 
10 1K 1K 

14 (nominal res) 4K 5.07K 
14 (high res MESO) 2K 7.6K 

AHI 
3 12% (reflectance) 12% 
7 3K 6.43K 

8 (clear-sky) 1K 1K 
8 (cloud-top) 2K 2K 

9 1K 1K 
10 1K 1K 
14 4K 5.07K 

VIIRS 
M11 2K 2K 
M15 4K 5.07K 

AVHRR-3 
4 4K 5.07K 

 
 
 
Earth Edge Test 
 
All pixels within the target scene must have valid earth navigation associated with it. If 
any pixel within the target scene is determined to be located in space (i.e., off the earth 
edge) the target scene fails, and is flagged. The space mask provided by the framework is 
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used for this purpose. It is assumed that a space mask will be passed down by the 
framework to the L2 product algorithm level for use by the various algorithms. 
 
Satellite Zenith Angle Test 
 
If the target is determined to be located at a sensor viewing angle greater than 70⁰, the 
target scene fails and is flagged as off the earth edge.  
 
Fractional Cloud Cover Test 
 
The clear-sky mask product associated with each pixel is used to classify the target scene 
as cloudy or clear. When the intent is to track clouds, a minimum threshold of 10% is 
used to determine whether the target scene is cloudy or clear. In other words, if at least 
10% of the pixels in a target scene are deemed as being cloudy or probably cloudy, then 
the target scene is classified as cloudy. When the intent is to track clear-sky water vapor 
features, then a minimum threshold of 0% is used to determine whether the target scene is 
cloudy or clear. In other words, every pixel in the target scene must be deemed clear for 
this target scene to be deemed a suitable clear-sky water vapor target. An exception is 
made, however, when the upper-level water vapor band (6.15 um) is used to track clear-
sky moisture gradient features. Because this band senses radiation only from the middle 
and upper layers of the atmosphere, any pixel which is clear above a low-level cloud is 
considered clear instead of cloudy. In practice, a pressure threshold of 600 hPa is used to 
identify the low cloud. In other words, a cloudy pixel assigned a cloud-top pressure 
greater than 600 hPa is considered to be clear instead of cloudy. This exception is made 
to increase the coverage of these winds.    
 
The cloudy or clear designation given to the target scene has implications on the target 
selection tests (described in sections 3.4.2.1.1-3.4.2.1.3) and/or thresholds used as well as 
which algorithm is used to assign a height to the target (described in section 3.4.2.2). 
 
Channel Validity Test 
 
The channel brightness temperature or reflectance percent of each pixel in a target scene 
is checked to ensure its value falls within a valid range. The valid range of reflectance 
percent for a visible channel is 1-200. For the IR channels, the valid range of brightness 
temperature is 150-340K. If the channel brightness temperature or percent of any pixel in 
the target scene falls outside the valid range the target fails and is flagged. 
 
Spatial Coherence Test 
 
The spatial coherence test is applied when winds are being generated from cloudy target 
scenes. 
 
Originally proposed by Coakley and Bretherton (1982), the spatial coherence method 
utilizes the local spatial structure (local mean and standard deviation) of the IR-window 
radiance field to determine the radiances associated with cloud-free and completely 
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cloud-covered fields of view and to infer the radiances associated with partially filled 
fields of view. In the context of the DMW algorithm, the method is first used to filter out 
target scenes that are too uniform to track reliably, and second, to filter out scenes that 
may contain multiple cloud layers. For both purposes it is necessary to compute the local 
mean and standard deviation of the radiance field derived from 3x3 sub-regions within 
the larger target box. The mean and standard deviation values are computed for the entire 
line segment (with data surrounding the target box). Near the edges these values are 
computed with however many pixels are available. 
 
After computing the mean and standard deviation radiance values for all possible 3x3 
pixel sub-regions in the target box, a standard deviation threshold (1.0 Wm-2 sr-1 um-1) is 
applied that results in a “filtered” or coherent sample. The standard deviation threshold 
value is chosen arbitrarily with consideration given to the range of possible data values 
expected in the imagery.  The resulting “filtered” or coherent sample represents either 
cloud-free or completely cloud-covered pixels from the less-coherent sample that is likely 
to include partially filled fields of view.  If more than 80% of the total number of 3x3 
pixel sub-regions within the target scene have a standard deviation below the defined 
threshold, the scene is deemed to be too coherent and it fails to be a viable target for 
subsequent feature tracking. Target scenes that contain a mixture of cloud-free and cloud-
covered pixels exhibit a characteristic arch shape as shown in Figure 5. 
 
 
Multi-Layer Cloud Test 
 
The multi-layer cloud test is applied when winds are being generated from cloudy target 
scenes. 
 
Target scenes that contain multiple cloud layers in them can be difficult to track since 
clouds at different levels of the atmosphere may be moving in different directions and/or 
speeds. Furthermore, the assignment of a representative cloud height in these situations is 
difficult given the existence of clouds at different levels of the atmosphere. 
 
In order to avoid these troublesome target scenes, the filtered sample from the spatial 
coherence approach described above is used in a cluster analysis approach in order to 
identify the possible existence of multiple cloud layers. The basic idea behind the method 
is to use the local mean and standard deviation information to identify clusters of points 
sharing common characteristics (such as mean radiance and low variance). If more than 
two clusters (one of which is implicitly assumed to be the surface in clear sky conditions) 
is found in a target box then the scene is rejected. The key concept of this approach is that 
peaks in the frequency histogram can be described by Gaussian distribution functions 
(Simmer et al., 1982; Rossow et al., 1985; Nieman et al., 1993). 
 
Using the filtered sample, the method starts by identifying the peak in the 1-D histogram 
of local mean IR radiance values. A Gaussian curve is then fitted to the peak of the 
histogram and all points falling within +/- 3 standard deviations of the peak value are 
added to the dominant cluster sample. Likewise, a second Gaussian is fitted to the “cold 
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peak” of the histogram and the cold cluster is identified. Lastly, the total number of 
points falling within the dominant and cold clusters is summed and compared to the total 
number of points in the filtered sample. If the total number of points from both clusters is 
less than 80% of the original filtered sample it is assumed that a third, unidentified, 
cluster exists (in theory representing another cloud layer) and the target is rejected. The 
example shown in Figure 6 is for a target scene that was partly filled by a single cloud  
layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Scatter diagram of window channel IR local mean radiance and standard 
deviation values for a single target scene. Each point in the figure represents a 3x3 array 
of pixels constructed from 4-km GOES IR radiance data. The cluster of points near 80 is 
associated with clear sky while the cluster near 30 is associated with a single cloud layer. 
The points in the arch represent partly filled fields of view. 
 
 
The step by step procedure for the above procedure is defined below: 
  
1. Construct histogram of radiance values from 0 to 199 using bin width of 1. 

 
2. Estimate the variance using a two point method (one end point is always the peak 

frequency) for the three bins closest to the peak (Note: if there is more than one peak the 
first one is selected) on the LHS with the formula: 
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                                                   (5) 

 
 

Where x is the bin value (i.e., radiance), f is the number of points in the bin (i.e., 
frequency), 

 
𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−1+𝑥𝑥𝑖𝑖

2
                                                                      (6) 

 
and 

 
 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−1+𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2
                                                     (7) 

 
NOTE: If fi is 0 then the variance is set to a value of 0. 

 
3. Average the three variance estimates to obtain the final variance for the LHS half 

curve.  

 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿 = 1

3
∑ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖3
𝑖𝑖=1                                           (8) 

 
NOTE: If the computed variance is greater than 25 it is set to a value of 25. Also, 
only non-zero variance values are used to compute the average. This means any bin 
having a zero count will not be used in the average.  

 
4. Repeat steps 2 and 3 for the three bins closest to the peak on the RHS of peak 

frequency. 

 
5. Compute the full Gaussian curve using LHS and RHS variance values. The full 

Gaussian spans the interval ±5 standard deviations about the peak frequency and is 
computed using: 

𝑓𝑓𝐺𝐺𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑥𝑥𝑒𝑒 �−
�𝑥𝑥𝑖𝑖−𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2

2�𝑣𝑣𝑝𝑝𝑣𝑣𝑖𝑖𝑝𝑝𝑣𝑣𝑣𝑣𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿,𝑅𝑅𝐿𝐿𝐿𝐿�
�                              (9) 

 
 NOTE: If the exponent is less than -10.0 it is set to a value of 0.0. 
 
6. Find peak frequency of 5 coldest non-zero clusters and repeat steps 2 to 5 for the cold 

peak. 

 
7. Total the number of pixels engulfed by the two Gaussian curves according to the 

following rules: 
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±1 standard deviation of peak, sum up all histogram points 
±1 to 3 standard deviations of peak, sum up points in Gaussian histogram (from 
step 5) 
Do not count pixels outside this range   

 
8. If the total number of points from both clusters is less than 80% of the original 

filtered sample, it is assumed that a third, unidentified cluster, exists and the target 
scene is flagged. DMWA assigns QC_Flag=6 to the processed target scene and 
moves to the next target scene. 

Note: If the cold peak corresponds with the overall peak this implies a single cloud 
layer exists in the target scene. This would be an acceptable target. 

 
 

  
 
Figure 6. Histogram plots of local mean infrared radiance values for a single target scene: 
(Left) For the entire target scene, (Right) Filtered sample with Gaussian curves fitted to 
the peaks.  The peak on the left is associated with a single cloud layer. 
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Day/Night Terminator Test 
 
The Day/Night terminator test is applied when winds are generated from visible (0.64um) 
or SWIR (3.9um) bands. 
 
When the VIS or SWIR band is being used, a test is invoked in order to avoid the 
day/night terminator. If the VIS channel is being used, then the solar zenith angle of the 
center pixel of the target scene must be less than or equal to 80o for the target to be 
deemed a suitable target. If the SWIR channel is being used, then the solar zenith angle of 
the center of the target scene cannot be less than 90o or greater than 200o for the target 
scene to be deemed a suitable target.  
 
 

3.4.2.2  Feature Tracking 
 
Correlation-based methods are commonly used to track cloud and clear-sky water vapor 
features in image sequences. A widely used correlation approach to feature tracking is the 
Sum of Squared Differences (SSD).  This correlation method, like all others, aims to 
locate a target scene, at some time t, in a larger search scene at some earlier or later time.  
This process is illustrated in Figure 7. A similarity criterion is computed that measures 
the correlation between the target and search area pixel scenes in the two images. In the 
DMW algorithm a feature or target is selected from the middle of three images and is 
tracked backwards and forwards in time, thus generating two displacements. These two 
displacements are then averaged to generate an average wind vector that is taken to  
 

 
 
FIG. 7. Schematic showing the basic concepts associated with the feature tracking 
algorithm. Targets are selected from the middle image of a three-image loop and tracked 
forward and backward in time via the SSD method. The two displacements are averaged 
to produce a final motion estimate.  Only the forward vector is shown in the figure. 
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represent the motion of the target over the time interval spanned by the image triplet. This 
average vector is assigned to the middle image target location. This approach is what we 
will refer to as the conventional feature tracking approach. This approach is used when 
tracking clear-sky water vapor features when using the ABI water vapor channels 8 
(6.15um), 9 (7.0um), and 10 (7.4um). 
 
When tracking cloud features, however, an approach referred to as nested tracking 
(Daniels and Bresky, 2010) is used. Nested tracking uses the SSD method to compute 
local motions nested within a larger target scene together with a clustering algorithm, to 
arrive at a superior motion solution for the larger target scene. The details of this 
approach are described below in Section 3.4.2.2.2. 
 
A short term GFS model forecast wind is used in the feature tracking step to center the 
location of the search area in the other images. This is done for two reasons. First, it 
minimizes computational time required for tracking and secondly, minimizes the number 
of false solutions generated by the SSD method.  It should be emphasized that the search 
region must be sufficiently large to allow for substantial departures from the forecast. It 
has been shown by Merrill (1989) that the derived wind is inherently constrained to the 
forecast wind by the following relationship: 
 

                                               t
xLuu g 2

)2()( −
≤−                                                  (10) 

 
where u (m/s) is the east-west component of the satellite wind, ug (m/s) is the east-west 
component of the forecast wind, L is referred to as the lag size and is the max 
displacement of a target scene within a given search box, t is the time interval (in 
seconds) between images and x is the resolution of the imagery in meters. A similar 
relationship holds for the north-south component, but is omitted for brevity. For a given 
image sequence time interval and pixel resolution, the ratio given by the right hand side 
of equation (10) yields a value that represents the maximum departure of the feature 
tracking wind solution from the forecast wind. It is important that this ratio be 
sufficiently large to minimize the dependency of the forecast wind in the tracking step. 
Furthermore, the magnitude of this ratio must be considered when different size target 
scenes and/or sequence time intervals are used. For example, for a given image 
resolution, if smaller image time intervals are desired, then a corresponding reduction in 
the lag size must be made in order to keep the magnitude of the ratio constant. By 
specifying a maximum forecast departure of 30 m/s in Equation (10), the equation for 
keeping the lag size constant is given by: 
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By specifying the desired time interval between images to use and the resolution of the 
imagery in Equation 11), the lag size can be computed. Once the lag size is known, the 
size of the search scene can be computed from: 
 

            S = T + (L/2) * 2           (12) 
 
Where:  S is the search scene size in pixels 
  T is the target scene size in pixels 
  L is the lag size in pixels 
 
In summary, the step by step procedure for tracking is as follows: 
 

1. Compute forecast displacement, in pixels, using the forecast wind valid at the 
target lat/lon and interpolated to the initial height estimate. 

2. Use forecast displacement to center search box. 
3. Fill search box with data from image buffer 
4. Find matching scene in the first and third images and compute AMV 

displacement via the conventional or nested tracking algorithm (displacement is a 
real value not an integer value). 

5. Compute end point of AMV displacement vector in pixel coordinates 
6. Compute earth location (lat/lon) of end point 
7. Compute U/V components using the beginning (target  center pixel) and ending 

(match location) lat/lon values 

 

3.4.2.2.1  Sum-of-Squared Difference (Euclidean Distance) 
Method 

 
The sum-of-squared-differences method (SSD) is the correlation routine used by the 
DMW algorithm. In the SSD routine the following sum is minimized: 
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where: I1 is the brightness temperature at pixel (x,y) of the target scene, I2 is the 
brightness temperature at pixel (x,y) of the search window, and the summation is 
performed over two dimensions. In practice, the region over which the search is 
conducted is substantially larger than the size of the target scene and the above 
summation is carried out for all target box positions within the search region. The array 
of positions that the target box can assume in the search region is often referred to as the 
“lag coefficient” or “lag” array and the field of values is referred to as the correlation 
surface. The size of the search and lag arrays are given by Equations (11) and (12) in the 
previous section. 
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To speed up the search for the minimum SSD value, the tracking algorithm first 
constructs a table (a square array) of values specifying the order of positions to search 
within the lag matrix. This is illustrated in Figure 8. The first point in the table 
corresponds with the middle of the lag matrix, which also corresponds with the center of 
the search region, which also corresponds with the location predicted by the forecast. The 
search then “spirals” outward in a clockwise fashion about the central point. By starting 
the search in the middle of the search region we are hopefully maximizing our chance of 
finding a match sooner than if we were to start in the top left corner of the search region. 
The spiral search, when used in conjunction with the practice of terminating the SSD 
summation early once a current minimum has been exceeded, can significantly reduce the 
number of computations required during the tracking step of the DMW algorithm. 
 
 
 

     

 7 8 9 10 

 6 1 2 11 

 5 4 3 12 

    13 

  
 
Figure 8.  Table (a square array) of values specifying the order of positions to search 
within the lag matrix as part of the spiral search algorithm. 
 
 
A typical correlation surface for the SSD method is shown in Figure 9. Each pixel in this 
figure represents a SSD value for a potential matching scene in the search region. The 
cool colors (blues) indicate minimum values while the warm colors (yellows) indicate 
relative maxima. The minimum SSD solution value results in a discrete, pixel 
displacement being identified as a possible DMW tracer. Unaltered, these integer 
displacements would cause an artificial binning of the satellite derived wind estimates. 
To avoid this effect, the SSD values of the four points surrounding the minimum SSD are 
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used to linearly interpolate to sub-pixel accuracy. The following equation is used to 
compute the fractional element displacement: 
 

𝛥𝛥 = (𝑙𝑙1−𝑙𝑙3)
2(𝑙𝑙1+𝑙𝑙3−2𝑙𝑙2)

                                                              (14) 
 
where l_1 is the lag array value at (x-1, y), l_2 is the lag array value at (x, y) (i.e., the 
minimum SSD value) and l_3 is the lag array value at (x+1, y). 
 
The fractional value is added to the integer displacement to produce a Real (ie., non-
integer) estimate of the displacement. 
 
A similar equation is used for the fractional line displacement, but it uses the lag array 
values above (x, y-1) and below (x, y+1) the minimum lag location. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Example of a typical correlation surface for the Sum-of-Squared Difference 
(SSD) tracking method. The cool (blue) colors indicate minimum values while the warm 
(yellows) colors indicate relative maxima. 
 

3.4.2.2.2 Nested Tracking 
 
When tracking cloudy target scenes a technique referred to as “nested tracking” is 
employed. This approach involves nesting smaller (5x5 pixels) target scenes within a 
larger target scene (ie., whose size is specified in Table 5) so that a field of local motion 
vectors can be derived over the interior pixels.  
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A schematic of this approach is shown in Figure 10 alongside one example of the vector 
field produced by the approach. Differences in orientation and magnitude can arise 
between the local motion vectors if more than one cloud layer is being tracked or if 
multiple scales of motion are being detected. Outliers vectors – those vectors that differ 
greatly from most of the sample – can result if the cloud is evolving or if the smaller box 
is insufficiently large to resolve the true motion. The second contributor to vector outliers 
is often referred to as the aperture effect and is discussed at length in the field of 
computer vision (Trucco and Verri, 1998). The red vector shown in Figure 9 makes it 
clear that averaging conflicting motion within a target scene can produce a slow wind 
speed estimate. The challenge is to derive a dominant motion vector from a subset of all 
possible solutions that best represents the flow of the larger target scene. This can be 
accomplished by analyzing all of the local displacements within the larger target scene 
with a cluster analysis program. More specifically, a cluster analysis of the line and 
element displacements is done to produce clusters that represent unique displacements.  
 
 

 
Figure 10. Schematic of the nested tracking approach. The white vectors show the local 
motion vectors successfully derived for each possible 5x5 box within a larger 15 x 15 
target scene. The red vector on the right is the resulting motion vector if one were to take 
an average of all the successfully derived local motion vectors.  
 
 
The justification for using a cluster analysis algorithm to analyze the local motion field is 
twofold. First, as was discussed above, the local motion field can be quite noisy. The 
field of vectors often reveals motion associated with two or more cloud layers and/or 
spatial scales. Removing noise and separating the sample into coherent motion clusters 
can prevent the excessive averaging of motion occurring at multiple levels or for different 
scales that can lead to a slow speed bias. Second, identifying clusters in the local motion 
field provides a means for directly linking the tracking step with the height assignment 
step. In other words, the pixels belonging to the coherent clusters allow us to limit the 
sample of pixels used for height assignment. 
 



 52 

For the DMW algorithm we selected a cluster analysis program called DBSCAN (Ester 
et. al., 1996), a density-based algorithm for identifying clusters in spatial databases with 
noise. It was selected because it is very effective at identifying clusters of varying shapes 
and, unlike other methods such as K-means (Lakshmanan et al., 2009a, 2009b, 2003), 
does not require the user to specify apriori the number of clusters to find. Two parameters 
must be specified before running DBSCAN: the minimum number of points in a cluster 
(currently set at 4) and the radius around the point to search for neighbors in the cluster 
(currently set at 0.5 pixels). Basically, DBSCAN steps through each point (each point 
being a displacement in line and element space) and classifies it in one of three ways. A 
“core” cluster point has at least 4 neighbors within its neighborhood (radius).  A 
boundary point has fewer than 4 neighbors but is still connected to a cluster by at least 
one other point. The third possibility is that the point does not belong to any cluster and is 
“noise.” Output from DBSCAN consists of a list of clusters found and the number of 
points in each cluster. 
 

 
Figure 11. Motion clusters identified by DBSCAN clustering routine. Green dots indicate 
line and element displacements belonging to the largest cluster. Red dots indicate line and 
element displacements belonging to the second largest cluster. Blue dots represent 
incorrect or noisy line and element displacements. 
 
 
One example of output from DBSCAN is shown in Figure 11. This figure shows that 
noisy motions have been removed from the scene leaving two distinct motion clusters. 
The DMW algorithm selects the largest cluster to represent the dominant motion and 
computes a final derived motion vector by averaging the displacements belonging to the 
largest cluster. Figure 12 shows the vector field that remains after the analysis is 
complete. 
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Figure 12. Example of the vector field produced with nested tracking before (left) and 
after (right) DBSCAN is applied to find the largest cluster. The forecast vector (blue) is 
shown for comparison. 

3.4.2.2.3  Feature Tracking Gross Error Tests 
 
All retrieved wind values undergo a series of quality control tests to determine if the 
derived wind is valid. This series of tests are described below. If a retrieved wind fails 
any one of these tests, it is deemed to be an invalid wind and is flagged appropriately. 
Each failure is associated with a unique “flag” value which is saved in the DMW output 
file. These unique flag values are listed in Table 6. 
 
The tests are applied in the following order: 
 

1. Match on boundary check 
2. Correlation check 
3. u-component acceleration check 
4. v-component acceleration check 
5. u- and v-component acceleration check 
6. Slow wind speed check 
7. Pressure limit checks on cloud type 
8. Channel-specific NWP wind speed and direction comparison tests 

Correlation Test 
 
As mentioned in Section 3.2, one of two correlation tests is applied when matching the 
feature of interest to the original target scene. When nested tracking is employed, each 
matching 5x5 sub-scene must have a correlation score of 0.8 or higher. Otherwise, the 
displacement associated with the match is discarded and will not be analyzed by the 
cluster analysis routine. When conventional tracking is used instead of nested tracking, a 
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lower threshold of 0.6 is applied. In this case, the correlation scores of each of the 
intermediate (i.e., the reverse and forward) matching scenes (derived from the SSD 
method described in Section 3.4.2.3.1) are checked to see if they exceed the minimum 
threshold value of 0.60. If either scene fails this correlation test, the DMW product is 
flagged as unacceptable in the output file.  
 
A higher correlation threshold is used for nested tracking because the scene being 
matched is much smaller and this increases the likelihood of finding a false positive. The 
higher threshold is a way of accounting for the higher variance in the estimated 
displacement and is used to remove gross errors from the matching process. 
. 
u/v-acceleration Test 
 
If the DMWA is performing as intended, it is reasonable to expect that the wind estimates 
derived from each image pair of the image triplet will be similar to one another. While 
real accelerations are certainly plausible, especially in certain weather regimes (near jet 
streams, for example) testing for unrealistic accelerations is prudent, especially given the 
time and space scales we are concerned with. The existence of an unrealistic acceleration 
in either the u-component or v-component of the DMW is likely to be the result of a false 
positive in the tracking step. Large, unrealistic u- or v-accelerations are dealt with by 
imposing an upper limit of 10 m/s on the difference between the two individual u and v- 
components of DMWs derived for any of the spectral channels except the visible channel, 
where a 5 m/s limit is imposed. Any DMW that fails the u/v acceleration test is flagged. 
 
Slow Wind Speed Test 
 
The speed of every DMW is checked against a minimum speed threshold of 3 m/s. If any 
DMW is slower than this speed threshold, then the DMW is flagged. 
 
Cloud Type Pressure Limit Test 
 
Pressure limit checks are performed for each DMW assigned to the cloud types of thick 
ice, cirrus, supercooled or liquid cloud scenes and flagged as a Gross Error Failure if the 
thresholds are exceeded. All DMWs assigned to the mixed cloud type are flagged, as 
well. The thresholds, applied only to cloud-track winds, are as follows:  
 

 
Cloud Type 

 
Test Threshold 

Thick Ice and Cirrus DMW flagged if median pressure > 500 hPa 
Supercooled and Liquid Water DMW flagged if median pressure < 500 hPa 
Mixed DMW flagged 
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Correlation Boundary Test 
 
If either of the intermediate matching scenes derived from the SSD method described in 
Section 3.4.2.3.1 are found on the boundary of the search scene, then the match scene is 
flagged. This condition may indicate the true matching solution is located beyond the 
domain of the search scene. In terms of the lag array, this implies that the tracer is 
rejected if the minimum SSD value is found along the edges of the lag array. Likewise, 
when nested tracking is used, any matches found on the boundary of the lag array are 
discarded from influencing the dominant motion calculation. 
 
It should be noted that when tracking the entire target scene with the conventional 
approach, the correlation boundary test results in a failed tracer. This is not true when 
nested tracking is employed. In this case, the match is rejected, and the algorithm moves 
to the next pixel where it attempts to compute another local motion vector. In other 
words,  the small 5x5 sub-target is discarded, not the entire target scene. 
 
NWP Vector Difference Test 
 
An additional quality control component of the derived motion winds is the removal of 
wind estimates that differ significantly from a short-term numerical weather prediction 
(NWP) forecast wind. The goal of this test is to remove those winds that are grossly 
different from the forecast due to a poor motion estimate, a poor height assignment, or 
both. Previously this test examined the difference between the speed and direction 
components of the wind vector separately but has since been combined into a single 
vector difference threshold that is band dependent. The threshold was determined, more 
or less quantitatively, by examining the relationship between the product accuracy 
(relative to ground truth radiosonde observations), as defined by the mean vector 
difference and the standard deviation about the mean, and the maximum vector 
difference. The upper limit was identified as the vector difference value at which the 
precision specification dropped sufficiently below the requirement (4.2 m/s set forth in 
the F&PS document) but did not reduce the coverage (i.e., sample size) excessively. The 
plot used to determine the vector difference threshold for the LWIR winds is shown 
below in Figure 13. 
 
Although the standard deviation curve (red) first dips below the precision specification 
value when a vector difference threshold of 16 m/s is selected, it is clear from the 
diagram that the sample size isn’t adversely impacted until the limit drops below 10 m/s. 
For this reason, a threshold of 10 m/s was selected as the upper limit for the LWIR winds, 
meaning any wind having a vector difference from the forecast of more than 10 m/s is 
rejected. This threshold is applied as a final check on the AMV before it is classified a 
good wind. In a similar fashion, vector difference thresholds were determined for all 
wind product bands. Table 8 summarizes the various band-dependent vector thresholds in 
current use by the DMW algorithm. 
 
NOTE: The NWP Vector Difference Test is NOT applied when processing the Tropical 
Cyclone high-resolution GOES MESO sector winds.  
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Figure 13. GOES-16 AMV-radiosonde wind verification statistics for the ABI LWIR 
winds for the period November 1, 2017- January 23, 2018. The Mean Vector Difference 
(MVD) statistic is used to determine the accuracy of the wind whereas the standard 
deviation is used to quantify the precision. Note that the accuracy specification (7.5 m/s) 
is not shown in this figure.   
 
Table 8. Summary of the vector difference thresholds used in the DMW algorithm. 
 

Channel 
Number 

 
Tracer Type 

 
Vector Difference 
Threshold  (m/s) 

2 Cloud-top 6.0 
7 Cloud-top 7.0 
8  Cloud-top 10.0 
8  Clear-sky water vapor 12.0 
9 Clear-sky water vapor 12.0 
10 Clear-sky water vapor 12.0 
14 Cloud-top 10.0 

 

3.4.2.3  Target Height Assignment 
 
Each suitable target (ie., those passing all of the target selection tests described in Section 
3.4.2.1.1) is assigned a height using information from the middle image of the loop 
sequence. The cloudy or clear designation for each target scene (per the fractional cloud 
cover test described in Section 3.4.2.1.1) has implications on how a representative height 
assignment is computed for each target scene.  
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The process of assigning a representative height to the DMW tracer involves selecting the 
appropriate sample of pixels from the target scene and using these pixels to compute a 
representative height for the target scene being processed. The following factors drive the 
selection of the appropriate sample of pixels to use, as well as the approach, to compute a 
representative height for each target: 
 

• Target is deemed clear or cloudy 
• Cloud height quality flag check 
• Channel used to derive the wind 
• Whether or not the nested tracking methodology is used 

 
Cloudy Target Scenes 
 
When winds are generated from cloudy target scenes, input pixel-level cloud-top 
pressures derived using NESDIS’ Enterprise Cloud Height Algorithm (Enterprise Cloud 
Height ATBD for details) are used to compute a representative height for the target 
scene. Since the nested tracking approach is used when using these channels, only cloud-
top pressures associated with pixels belonging to the largest cluster (as defined in the 
nested tracking discussion in Section 3.4.2.2.2) are used to derive a representative height. 
Because two unique large clusters are identified – one for the reverse time step and one 
for the forward time step – the cloud-top pressure samples from both of these clusters are 
combined and the median cloud-top pressure value is assigned as the representative 
height for this target.  
 
A key benefit of this approach is that the assigned height is inherently linked to the 
tracking solution since the same sample of pixels contributes to each of these derived 
quantities. Figure 14 highlights the fact that this approach will usually produce a lower 
height assignment in the atmosphere (higher pressure) than the traditional method of 
assigning the height based on an arbitrary cold sample (typically 20%) of pixels.  
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Figure 14. Cloud-top pressure distribution for a single target scene. The values  
associated with the largest cluster are shown in green. 
 
In situations where a low-level cloudy target scene over ocean is partially or totally 
located in an area experiencing a low-level temperature inversion, the DMWA must 
apply a different approach to compute a representative height assignment to the target 
scene.  
Low-level temperature inversions occur frequently over the ocean in the vicinity of the 
subtropical high where large-scale subsidence contributes to their formation. These 
regions are often covered by extensive sheets of marine stratocumulus cloud located at 
the base of the temperature inversion (see Figure 15). Cloud height algorithms often 
overestimate the height of these cloud layers by 200 hPa or greater (Gustafsson and 
Lindberg, 1999). The problem arises when there are two elevations in the temperature 
profile at which the cloud temperature is reached. In this scenario the actual cloud layer is 
found at the bottom of the inversion.  
 
The DMWA uses the low-level temperature inversion flag output by the cloud height 
algorithm to identify those pixels in a target scene where a low-level temperature 
inversion is present. In these situations, the DMWA keeps track of pixels within the 
largest nested tracking clusters, whose heights are derived at the base of the inversion 
versus those derived radiometrically via the cloud height algorithm. The DMWA uses 
only the cloud heights (pressures) belonging to the larger of these two samples to assign a 
height to the derived wind. The representative height assigned to the derived motion wind 
is the median pressure of the larger sample. 
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Figure 15. Idealized temperature profile highlighting the cloud height assignment 
problem posed by low-level temperature inversions. 
 
 
Clear Target Scenes 
 
When ABI channels 8 (6.15um, clear sky), 9 (7.0um), or 10 (7.4um) are used for 
targeting clear-sky target scenes (i.e. elevated moisture gradients are being tracked), only 
clear pixels in the target scene are used. Specifically, a histogram of the target scene 
brightness temperature values is constructed from all of the clear pixels in the target 
scene. Next, the 20% coldest pixels of this histogram are identified and the median 
brightness temperature is calculated. This median brightness temperature is then 
converted to a height (in pressure) value through linear interpolation of the associated 
GFS forecast temperatures that bound this brightness temperature. 
 
 
Initial Cold Sample Height 
 
Regardless of whether nested tracking or traditional tracking is being used an initial “cold 
sample” height assignment must be computed. The primary purpose of computing an 
initial height is to use it as a look up index to obtain the forecast wind from a profile. The 
forecast wind is subsequently used to center the search box in the subsequent (or 
previous) image. Depending on the channel being processed either a histogram BT values 
or cloud top temperature values is used to construct a 1-D histogram. The following steps 
are carried out in constructing the histogram: 
 

1. Loop through each pixel in the target scene and check the cloud mask, 
temperature (BT or CTT), low-level inversion flag and cloud height quality 
flag. For clear sky tracers retain all clear and probably clear pixels. For cloudy 
tracers retain all pixels having a valid cloud top pressure (not missing) and 
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‘good retrieval’ quality flag. Next, check that the temperature value is in the 
range 150 – 340 K and exclude those outside of the range. Lastly, determine 
how many pixels are located in a low-level inversion region (low-level 
inversion flag=1) and how many pixels are outside a low-level inversion 
region (low-level inversion flag=0). Determine which sample is larger. 
 

2. Using the larger sample, a histogram is constructed for the range 150 K – 340 
K. With a scale factor of 10 the range of the histogram is actually 1500 – 
3400. Each CTT or BT from the larger sample is placed in a slot on the 
histogram rounding up or down to the nearest bin. 
 

3. A point cutoff is computed using the cold threshold: 

 
             Point_Cutoff = NINT(REAL(Histogram_Points) * Cold_Threshold) 
 
            where ‘Histogram_Points’ is the size of the screened sample from step 1 
 and  Cold_Threshold is: 

 
Band 2 0.25 
Band 7 0.25 
Band 8 0.20 clear sky, 0.99 cloud top 
Band 9 0.20 clear sky, 0.99 cloud top 
Band 10 0.20 clear sky 
Band 14 0.25 

 
4. Starting from the cold end scan the histogram to find the cutoff slot. One of 

three conditions must be met: 

 
  DO BrtTemp = Lower_Bound, Upper_Bound   (threshold_loop) 
 
     Cold_Sample = Cold_Sample + Histogram(BrtTemp) 
 
      IF (Histogram(BrtTemp) .GT. 0) Number_Of_Bins = Number_Of_Bins + 1 
 
       IF (Cold_Sample .GT. Point_Cutoff .AND. Number_Of_Bins .GT. 1) THEN 
 
         Cold_Sample = Cold_Sample - Histogram(BrtTemp) 
          Cold_Slot_Threshold = BrtTemp - 1 
        EXIT 
 
     ! Keep at least one histogram bin 
               ELSE IF (Cold_Sample .GT. Point_Cutoff .AND. Number_Of_Bins .EQ. 1) THEN       
  Cold_Sample = Cold_Sample 
        Cold_Slot_Threshold = BrtTemp 
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        EXIT 
 

       ELSE IF (Cold_Sample .LE. Point_Cutoff .AND. BrtTemp .EQ. Upper_Bound) THEN 
 
                       Cold_Sample = Cold_Sample 
                       Cold_Slot_Threshold = BrtTemp 
                       EXIT 

 
   ENDIF 
 
  END DO  (threshold_loop) 

 
Cold sample arrays of BT or CTT, cloud top pressure and cloud top height are created 
using the cold slot threshold as the highest value allowed 

3.4.2.3.1  Derived Motion Wind Height Assignment Quality Tests 
 
All retrieved wind height (in pressure) values undergo a couple of quality control tests to 
determine if the derived heights are valid. These tests are described below. If a retrieved 
height fails any one of these tests, it is deemed to be invalid and is flagged appropriately. 
Each failure is associated with a unique “flag” value which is saved in the DMW output 
file. These unique flag values are also listed in Table 6. 
 
Acceptable Height Assignment Check 
 
An acceptable height assignment check is done for each derived motion wind that is 
attempted. The derived height is checked to determine if it falls within an acceptable 
height (in pressure) range. The minimum and maximum pressures belonging to this range 
are a function of which channel is being used to derive the wind and shown in Table 9.  
 
Table 9. Acceptable height range to use as a function of channel used and tracer type 
 

Channel 
Number 

 
Tracer Type 

Acceptable Height 
Range  (hPa) 

ABI 
2 (nominal res) Cloud-top 700 - 1000 

2 (high res MESO) Cloud-top 100 - 1000 
7 (nominal res) Cloud-top 700 - 1000 

7 (high res MESO) Cloud-top 100 - 1000 
8 Cloud-top 100 – 350 
8 Clear-sky water vapor 100 - 1000 
9 Clear-sky water vapor 100 - 1000 
10 Clear-sky water vapor 450 - 700 
14 Cloud-top 100 - 1000 

AHI 
3 Cloud-top 700 - 1000 
7 Cloud-top 700 - 1000 
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8 Cloud-top 100 – 350 
8 Clear-sky water vapor 100 - 1000 
9 Clear-sky water vapor 100 - 1000 
10 Clear-sky water vapor 450 - 700 
14 Cloud-top 100 - 1000 

VIIRS 
M11 Cloud-top 300 - 1000 
M15 Cloud-top 100 - 1000 

AVHRR-3 
4 Cloud-top 100 - 1000 

 
 
Height Consistency Check 
 
When nested tracking is performed, a height consistency checked is performed between 
the median pressure computed from the largest cluster belonging to the first and second 
image pairs, respectively. If the difference in these two pressures exceeds 100 hPa, then 
the derived motion wind is flagged as bad.  
 
Cloud Height Quality Flag Check 
 
The pixel level ABI cloud height quality flag, produced by the upstream cloud algorithm, 
is used to filter pixels based on the value of this quality indicator. This check is invoked 
when building the Initial Cold Sample Height (described above) and during the nested 
tracking height assignment step. The values for this flag are:  
  

 
Category 

 
Value 

Good Retrieval 0 
Marginal Retrieval 1 
Retrieval Attempted 2 
Bad Retrieval 3 
Opaque Retrieval 4 

 

3.4.2.4  Product Quality Control 
 
Quality control of the retrieved DMWs is performed in two ways. The first is through the 
application of target selection, feature tracking, and height assignment error checks as 
described in the previous sections. The second way involves the calculation of two 
quality indicators for each of the DMWs using two different, but related, algorithms: the 
Quality Indicator (QI) (Holmlund, 1998; Holmlund et al., 2001) and the Expected Error 
(EE) (LeMarshall et al., 2004; Berger et al. 2008).  
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3.4.2.4.1 Quality Indicator (QI) Method 
 
The statistically-based quality indicator (QI) developed at EUMETSAT estimates the 
reliability of each derived DMW based on several quality control tests (Holmlund, 1998, 
Holmlund et. al 2001). These tests not only analyze the consistency in space and time of 
each of the intermediate DMW vector components, but also the height and temperature of 
the tracers used in the vector determination, the symmetry of vector pairs achieved from 
tracking tracers between consecutive images, differences with surrounding vectors, and 
differences from a forecast field (optional). There are a total of seven individual 
components that contribute to the final QI score that is appended to each DMW.  A 
weighted average value is computed for the final quality test function value fi(x) for each 
vector.  In order to combine the results of the different test functions, each result must be 
normalized into a specific range.  This is done using a tanh-based function: 
 
 
                                                                                                                                                                                         (15) 
 
After normalization of all of the tests, QI values will be distributed from zero (poor 
quality) to one (perfect quality). 
 
Direction Consistency Check 
 
This calculation is a measure of the direction consistency of the DMW.  A quality tracer 
should provide sub-vectors that are similar in direction.  In function space it is calculated 
as: 
 
              Direction:                                                  (16) 
 
Di(x, y), Vi(x, y) are the direction (degrees) and speed (m/s) derived from the first image 
(i = 1) pair (image 1 and image 2) or the second imager (i = 2) pair (image 2 and image 
3) of an image triplet at location (x, y). 
 
The normalized component used in the software is constructed as such: 
  
                      QIdir = 1 – (tanh(|D2(x, y)-D1(x, y)|/(A*exp(-vel/B)+C)))**D               (17) 
 
Where: 
 
vel = (V1(x, y) + V2(x, y))/2  
 
The values of the constants are: 
 

A 20 
B 10 
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C 10 
D 4 

Speed Consistency Check 
 
This calculation is a measure of the speed consistency of the DMW.  Intermediate DMWs 
should show agreement in speed.  In function space it is calculated as: 
 
       Speed:  |V2(x, y)-V1(x, y)|/(A*(V2(x, y)+(V1(x, y))+B)                           (18) 
 
Vi(x, y) is the speed (m/s)  derived from the first image (i = 1) pair (image 1 and image 2) 
or the second image  (i = 2) pair (image 2 and image 3) of an image triplet at location (x, 
y). 
 
The normalized component used in the software is constructed as such: 
 
                            QIspd = 1 – (tanh(|V2(x, y)-V1(x, y)|/(A*vel+B)))**C                         (19) 
  
Where: 
 
 vel = (V1(x, y) + V2(x, y))/2 
 
The values of the constants are: 
 
A 0.2 
B 1.0 
C 3.0 

 
 
Vector Consistency Check 
 
This calculation is a measure of the vector consistency of the DMW.  This test looks at 
the vector pairs that make up the final DMW.  It should reject acceleration errors, but 
allow for real acceleration changes (jet entrance and exit regions).  In function space it is 
calculated as: 
 
             Vector: |S2(x, y)-S1(x, y)|/(A*(V2(x, y)+(V1(x, y))+B)                              (20) 
 
Si(x, y) is the vector (m/s) derived from the first image (i = 1) pair (image 1 and image 2) 
or the second image  (i = 2) pair (image 2 and image 3) of an image triplet at location (x, 
y). 
 
The normalized component used in the software is constructed as such: 
 
                       QIvec = 1 – (tanh(|S2(x, y)-S1(x, y)|/(A*vel+B)))**C                                (21) 
 
Where: 
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 vel = (V1(x, y) + V2(x, y))/2 
 
The values of the constants are: 
 
A 0.2 
B 1.0 
C 3.0 

 
 
Spatial Consistency Check (i.e. Best Buddy Check) 
 
This calculation is a measure of the spatial wind consistency of the DMW with its best 
neighbor. To do this, the DMW values are compared with the DMWs computed at the 
neighboring grid points.  
 
In function space it is calculated as: 
 
                 Spatial: |S(x, y)-S(x-i, y-j)|/(A*(|S(x, y)+(S(x-i, y-j)|)+B)                         (22) 
 
Here, S(x, y) = S1(x, y) + S2(x, y).  S(x-i, y-j) refers to the vectors (m/s) in the surrounding 
locations.  This spatial test is only applied to vectors within a predefined pressure range ( 
50 hPa), and location range (within 1 degree). 
 
The normalized component used in the software is constructed as such: 
 
              QIspatial = 1 – (tanh(|S(x-i, y-j)-S(x, y)|/(A*|S(x, y)+(S(x-i, y-j)| +B)))**C       (23) 
 
The values of the constants are: 
 
A 0.2 
B 1.0 
C 3.0 

 
Forecast Check 
 
This is currently set as an optional test, and is a measure of the consistency of the satellite 
DMW with the forecast wind at the height of the satellite DMW. The vector difference of 
the DMW values and the forecast vector interpolated to the same location and pressure 
level is computed to calculate it.  In function space it is represented as: 
 
               Forecast: |S2(x, y)-F1(x, y)|/(A*(|S2(x, y)+(F1(x, y)|)+B)                            (24) 
 
Where S2(x, y) is the vector (m/s) from the final DMW at location (x, y).  F1(x, y) is the 
interpolated forecast vector (m/s) at location (x, y). 
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The normalized component used in the software is constructed as such: 
 
                 QIfc = 1 - (tanh(|S2(x, y)-F1(x, y)|/(A*fc_spd+B)))**C                                (25) 
 
In practice, fc_spd is the speed (m/s) of the forecast at the DMW location.  The values of 
the constants are: 
 
A 0.4 
B 1.0 
C 2.0 

 
U-Component Consistency Check 
 
This calculation is a measure of the DMW’s u-component (m/s) consistency from each 
intermediate vector. In function space it is calculated as: 
 
            U-component:  |u2(x, y)-u1(x, y)|/((A*|u2(x, y)+(u1(x, y)|)+B)               (26) 
 
The normalized component used in the software is constructed as such: 
 
              QIuc = 1 - (tanh(|u2(x, y)-u1(x, y)|/(A*|u2(x, y)+u1(x, y)|+B)))**C                 (27) 
 
The values of the constants are: 
 
A 1.0 
B 1.0 
C 2.0 

 
 
V-Component Consistency Check 
 
This calculation is a measure of the DMW’s v-component (m/s) consistency from each 
intermediate vector. In function space it is calculated as: 
 
            V-component:  |v2(x, y)-v1(x, y)|/((A*|v2(x, y)+(v1(x, y)|)+B)              (28) 
 
The normalized component used in the software is constructed as such: 
 
                 QIvc = 1 - (tanh(|v2(x, y)-v1(x, y)|/(A*|v2(x, y)+v1(x, y)|+B)))**C              (29) 
 
The values of the constants are: 
 
A 1.0 
B 1.0 
C 2.0 
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To achieve a single QI value to represent the quality of each DMW, a weighted average 
of each normalized QI component is computed: 
 
          QI = Σ (Test Weight * Normalized QI Component test) / Σ Test Weights     (30) 
 
The test weights used for each normalized QI component is shown in Table 10. 
 
Table 10. Test weights used for each normalized QI component test. 
 
Direction Component 1.0 
Speed Component 1.0 
Vector Component 1.0 
Spatial Component 2.0 
Forecast Component 1.0 
U Component 0.0 
V Component 0.0 

 
 
Figure 16 shows an example of the final (weighted) QI distribution for winds generated 
from the 12 UTC 04 August 2006 Meteosat-8/SEVIRI proxy dataset. DMWs that possess 
QI values less than 0.60 are currently flagged as unacceptable quality. 
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Figure 16. Histogram of the final (weighted) QI values for Meteosat-8 DMWs at 12 UTC 
on 04 August 2006. 

3.4.2.4.2 Expected Error Method 
 
The Expected Error (EE) algorithm, originally developed at the Australian Bureau of 
Meteorology (LeMarshall et al, 2004) is an extension of the QI algorithm described in the 
previous section. It is designed to express quality in terms of a physical vector error 
metric (meters/second, m/s), rather than a normalized score such as the QI. A slightly 
modified version of the EE algorithm described in Berger et al. 2008 has been adopted 
for use with the GOES-R DMWA. As shown in (31), the algorithm regresses several 
DMW variables against the natural logarithm of the EE, which represents the vector 
difference (in m/s) between a large sample of collocated DMWs and radiosonde winds. 
  
                                                                                                                                                                          (31) 
 
 
where EE is the expected (or estimated) error, a0 is a constant, and an values are 
regression coefficients multiplied by their corresponding predictors (xn). The coefficients 
are applied in real time to compute and assign an EE to each DMW using: 

 
                                                                                                               (32) 
                                                                    
The (-1) term constrains the minimum EE value to be zero. The current predictors are: 
 

1. Constant (spectrally dependent) 
2. QI Speed Test 
3. QI Direction Test 
4. QI Vector Difference 
5. QI Local Consistency Test 
6. QI Forecast Test 
7. DMW Speed 
8. Assigned DMW Pressure Level (height) 
9. NWP Wind Shear (200 hPa Above – 200 hPa below DMW height) 
10. NWP Temperature Gradient (200 hPa Above – 200 hPa below DMW height) 

 
 
Table 11.  Expected Error coefficients and predictors for different Meteosat-8 channels 
derived from the period August – October 2007. 
 

Predictor Band-1 
(0.60um) 

Band-4 
(3.9um) 

Band-5 
(6.2um) 

Band-6 
(7.3um) 

Band-9 
(10.8um) 

CONST 3.073 3.13 2.42 2.42 2.871 

)1log(... 9922110 +=+++ EExaxaxaa

( ) 19922110 ... −= +++ xaxaxaaeEE
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QI Speed Check 0.176 0.003 0.0660 0.0660 -0.0664 

QI Direction Check 0.290 -0.171 0.199 0.199 0.1394 

QI Vector -0.101 -0.0471 -0.331 -0.331 -0.176 

QI Local Consistency -0,280 0.244 -0.173 -0.173 -0.252 

QI Forecast Check -0.585 -1.46 -0.552 -0.552 -0.509 

DMW Speed 0.014 -3.61x10-3 7.10x10-3 7.10x10-3 6.26x10-3  

DMW Pressure -1.63x10-3 -9.43x10-4 -6.79x10-4 -6.79x10-4 -7.42x10-4  

NWP Wind Shear 0.011 0.015 7.80x10-3 7.80x10-3 9.81x10-3 

NWP Temp Gradient 0.011 -7.47x10-3 6.89x10-3 6.89x10-3 0.0126 

 
 
Table 11 shows a set of predictors and their respective coefficients used to calculate EE 
for different bands from the SEVIRI instrument (proxy to the ABI) onboard the 
Meteosat-8 satellite, generated from a dataset containing collocated Meteosat-8 DMWs 
and radiosonde wind observations that covered the period August – October 2007.  
 
Synergistic Use of the EE and QI Quality Indicators 
 
The outputted EE and QI quality indicators associated with each DMW estimate can be 
used synergistically in order to optimize the quality and geographic coverage of the final 
DMW dataset passed onto the user community. The synergistic use of these quality 
indicators is designed to take advantage of the strengths of each. The EE is superior at 
identifying the quality of relatively slow DMWs, whereas the QI is better at identifying 
the quality of relatively fast DMWs. A study conducted under the GOES-R Risk 
Reduction (Berger et al. 2008) sought to identify thresholds for each parameter that could 
serve as a potential starting point for users to use, if so desired, in any process they may 
have established to select a subset of the highest quality DMWs.  Table 12 summarizes 
what these thresholds are, and shows that they vary as a function of the channel used to 
derive the DMW and the DMW speed. DMWs whose speeds are slower than the 
indicated speed thresholds are considered higher quality if their respective EE quality 
indicators are less then or equal to the EE threshold shown in Table 11. DMWs whose 
speeds exceed the speed thresholds are considered higher quality DMWs if their 
respective QI indicators exceed the QI thresholds shown in Table 12.  
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Table 12.  Recommended thresholds for synergistic use of the QI and EE indicators 
 

 
In order to validate the established thresholds in Table 12, Meteosat-8 DMWs were 
generated for an independent dataset covering February 2007 and compared to collocated 
radiosonde wind observations. The EE values were calculated using the generated 
coefficients from Table 11, and the QI was calculated as described in the previous 
section.  Table 13 shows an example of DMW-RAOB verification statistics looking at QI 
> 0.6, QI > 0.8 and the specific EE/QI threshold for IR DMWs from Table 12. The 
statistics are for all available DMW heights in the dataset. A 0.8 QI threshold produces a 
lower RMSE, mean vector difference, and standard deviation than the 0.6 threshold (as 
expected). However, the QI/EE combination threshold results in the lowest RMSE error, 
mean-vector difference and speed bias of the three quality indicator choices. Use of the 
combined QI/EE thresholds generally results in the retention of more (less) DMWs when 
using the QI > 0.8 (0.60) threshold alone. These findings also hold for the other channel 
DMWs. 
 
 
Table 13: Comparison statistics (m/s) between DMWs computed from the SEVIRI IR-
Window channel (10.8um) and collocated radiosonde winds during Feb 2007. 
  

QC QI > 0.6 QI > 0.8 

EE<=4.5  
.OR. 
(QI>90 and 
 Speed>25 m/s 

RMSE  7.62 7.30 6.14 
Bias    -1.62 -1.19 -1.02 
Number of matches 23692 17501 16861 
Mean Vector Difference 6.08 5.82 5.03 
Standard Deviation 4.60 4.39 3.53 
Avg. DMW Speed 17.16 18.48 17.21 

 
 
 
 

Channel         EE (m/s)  <           OR             (QI >         &     Speed (m/s) > 
1  (0.64um) 5.5                 95                         30 

                95                         30 
                95                         30 
                95                         30 
                90                         25 

4  (3.90um) 5.0 
5  (6.15um) 5.0 
6  (7.30um) 5.0 
9  (10.8um) 4.5 
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3.4.3 Algorithm Output 
 
Derived motion winds are generated separately by the band selected. The contents of the 
output of the DMWA are described in the following subsections. 
 

3.4.3.1   Product Output 
 
ID Description 

1 
Time of wind from the middle image in image triplet (secs since 1970-
01-01 00:00:00) 
Time 

2 Latitude (degrees north)  
Latitude 

 3 Longitude (degrees east) 
Longitude 

 4 Speed of wind vector (m/s) 
Wind_Speed 

 5 Direction of wind vector (degrees) 
Wind_Dir 

 6 Pressure assignment of tracer (hPa) 
MedianPress (hPa) 

 7 Temperature associated with the pressure assignment of tracer (K) 
MedianBT 

 8 Local Zenith Angle (degrees) 
SatZen  

 9 Time interval between image pairs (minutes)   
TimeInterval 

3.4.3.2   Diagnostic Information 
 
ID Description 

1 u-component of vector 1 (m/s) [backward in time] 
UComponent1 

2  v-component of vector 1 (m/s) [backward in time] 
VComponent1 

3 u-component of vector 2 (m/s) [forward in time]  
UComponent2 

4 v-component of vector 2 (m/s) [forward in time]   
VComponent2 

5 Speed of forecast wind (m/s) at pressure assigned to satellite wind  
Fcst_Spd 

6  
Direction of forecast wind (degrees) at pressure assigned to satellite 
wind  
Fcst_Dir  
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7  Tracking correlation of vector 1 [backward in time] 
CorrCoeff 

8  Tracking correlation of vector 2 [forward in time] 
CorrCoeff2 

9  Standard deviation of cloud top pressure values in target scene (hPa)  
VariancePress 

10  Cold sample counter in brightness temperature histogram 
PointIndex 

11  Latitude of vector 1 (degrees north) [backward in time] 
LatMatch 

12  Longitude of vector 1 (degrees east) [backward in time]  
LonMatch 

13  Latitude of vector 2 (degrees north) [forward in time] 
LatMatch2 

14  Longitude of vector 2 (degrees east) [forward in time]  
LonMatch2 

15  Standard deviation of largest 5x5 cluster (sample 1 – reverse vector)  
StdDevMVD1 

16  Standard deviation of largest 5x5 cluster (sample 2 – forward vector)  
StdDevMVD2  

17  
Standard deviation of sample 1 divided by magnitude of average 
displacement 
 PctOfAvg1 

18  
Standard deviation of sample 2 divided by magnitude of average 
displacement 
 PctOfAvg2 

19  
Number of distinct motion clusters from DBSCAN analysis  (sample 1 – 
reverse vector)  
NumClusters1 

20   Size of largest DBSCAN cluster (sample 1 – reverse vector) 
MaxClusterSize1 

21  
Number of distinct motion clusters from DBSCAN analysis  (sample 2 – 
forward vector)  
NumClusters2 

22  Size of largest DBSCAN cluster (sample 2 – forward vector) 
MaxClusterSize2 

23  Height  assignment of tracer (m)  
Altitude  

24  Date of 1st image (year and Julian day) 
PriorImageDate 

25  Time of 1st image (hour and minute) 
PriorImageTime 

26  Date of 3rd image (year and Julian day) 
NextImageDate 

27  Time of 3rd image (hour and minute)  
NextImageTime  
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28  Minimum cloud-top pressure (hPa) in largest cluster 
MinCTP 

29  Maximum cloud-top pressure (hPa) in largest cluster 
MaxCTP 

30  Minimum cloud-top temperature (K) in largest cluster 
 MinCTT 

31  Maximum cloud-top temperature (K) in largest cluster 
 MaxCTT 

32  Dominant cloud phase of target scene 
CloudPhase 

33  Dominant cloud type of target scene 
CloudType 

34  
NWP vertical temperature gradient  (K) [+/- 200 hPa about pressure 
assignment of tracer]  
TempGrad 

35  
NWP vertical wind shear (m/s) [+/- 200 hPa about pressure assignment 
of tracer]  
Wind_Speed_Shear 

36  Land mask  
LandFlag 

37  Low-level inversion flag 
 InversionFlag 

  

3.4.3.3      Product Quality Information 
 
ID Description 

1 

Product Quality Flag (0DMW product passes all quality tests; > 0 DMW 
product fails quality tests. (See Table 6 in Section 3.4.2.1.1 for 
description of DMW failure codes)  
Flag  

2 Expected Error estimate of derived wind (m/s) 
ExpectedErr 

3 
Quality Indicator (QI) of derived wind with forecast term applied (0-
100, with 100 being the best) 
QI 

4 
Quality Indicator (QI) of derived wind without forecast term applied (0-
100, with 100 being the best)  
QINF 

5 QI Test 1 value (speed consistency)  
QISpdFlag 

6 QI Test 2 value (direction consistency)  
QIDirFlag 

7 QI Test 3 value (vector consistency)  
QIVecFlag 
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8 QI Test 4 value (local consistency)  
QILocConsistencyFlg 

9 QI Test 5 value (forecast consistency) 
 QIFcstFlag  

10 Representative height error (hPa)  
CombinedMedianHgtErr 

11 Representative temperature error (K)  
CombinedMedianTempErr 

3.4.3.4      Metadata Information 
 
ID Description 

1 Satellite ID  
SatID 

2 Number of ABI channels   
NumOfChn 

3 ABI channel number   
AMVChannel 

4 Target box size (in pixels)   
BoxSize 

5 Lag size (in pixels)  
LagSize 

6 
Nested tracking flag (0=nested tracking disabled, 1= nested tracking 
enabled) 
 NestedTrackingFlg 

7 Target type (0 = clear; 1 = cloudy)  
Target_Type 

8 Number of QC flag values:  23 
 NumQAVals 

9 
Percent of targets associated with a QC flag value 0 
Good wind; passes all QC checks 
QA_Value_0 

10 
Percent of targets associated with a QC flag value 1  
Maximum gradient below acceptable threshold 
QA_Value_1 

11 
Percent of targets associated with a QC flag value 2 
Target located on earth edge 
QA_Value_2   

12 

Percent of targets associated with a QC flag value 3 
Cloud amount failure (less than 10% cloud cover for cloud track winds 
or greater than 0% cloud cover for water vapor clear sky winds)   
QA_Value_3 

13 
Percent of targets associated with a QC flag value 4  
Median pressure failure  
QA_Value_4 
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14 
Percent of targets associated with a QC flag value 5 
Bad or missing brightness temperature in target scene  
QA_Value_5 

15 
Percent of targets associated with a QC flag value 6  
More than 1 cloud layer present 
QA_Value_6 

16 
Percent of targets associated with a QC flag value 7 
Target scene too coherent (not enough structure for reliable tracking) 
 QA_Value_7 

17 
Percent of targets associated with a QC flag value 8 
Tracking correlation below 0.6 (not used for nested tracking) 
 QA_Value_8 

18 

Percent of targets associated with a QC flag value 9 
u-component acceleration greater than 5 m/s (for winds generated from 
visible channel) or 10 m/s (for winds generated from any other channel) 
QA_Value_9 

19 

Percent of targets associated with a QC flag value 10  
v-component acceleration greater than 5 m/s (for winds generated from 
visible channel) or 10 m/s (for winds generated from any other channel)  
QA_Value_10 

20 

Percent of targets associated with a QC flag value 11 
u- and v- component accelerations greater than 5 m/s (for winds 
generated from visible channel) or 10 m/s (for winds generated from any 
other channel)  
QA_Value_11 

21 
Percent of targets associated with a QC flag value 12 
Derived wind slower than 3 m/s 
QA_Value_12   

22 
Percent of targets associated with a QC flag value 13 
Target scene too close to day/night terminator (visible and SWIR only) 
QA_Value_13 

23 

Percent of targets associated with a QC flag value 14  
Median pressure used for height assignment outside acceptable pressure 
range (channel dependent)  
QA_Value_14 

24 
Percent of targets associated with a QC flag value 15 
Match found on boundary of search region  
QA_Value_15  

25 
Percent of targets associated with a QC flag value 16 
Gross difference from forecast wind (channel dependent)  
QA_Value_16  

26 

Percent of targets associated with a QC flag value 17 
Median pressure of largest cluster for first image pair is too different 
from median pressure of largest cluster for second image pair – only 
valid for nested tracking  
QA_Value_17 
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27 
Percent of targets associated with a QC flag value 18  
Search region extends beyond domain of data buffer  
QA_Value_18 

28 
Percent of targets associated with a QC flag value 19   
Expected Error (EE) too high 
QA_Value_19 

29 
Percent of targets associated with a QC flag value 20 
Missing data in search region  
QA_Value_20  

30 
Percent of targets associated with a QC flag value 21 
No winds are available for the clustering algorithm  
QA_Value_21  

31 
Percent of targets associated with a QC flag value 22 
No clusters were found  
QA_Value_22  

32 Total targets identified 
 NumTargets_Total  

33 Mean wind speed (m/s) for all good derived winds  
WndSpdMean 

34 Minimum wind speed (m/s) for all good derived winds  
WndSpdMin 

35 Maximum wind speed (m/s) for all good derived winds  
 WndSpdMax 

36 
Standard deviation about mean wind speed (m/s) for all good derived 
winds  
WndSpdStdDev 

37 Number of Atmospheric Layers  
 NumOfAtmosLayers 

38 
Number of good winds in atmospheric layer 1 
  (100 - 399.9 hPa) 
NumGoodWnds_Layer1 

39 
Number of good winds in atmospheric layer 2  
 (400 – 699.9 hPa) 
NumGoodWnds_Layer2 

40 
Number of good winds in atmospheric layer 3  
 (700 – 1000 hPa) 
NumGoodWnds_Layer3 

41 
Mean height (hPa) assigned to good derived winds in atmospheric layer 
1 
 CldHgtMean_Layer1 

42 
Standard deviation about mean height (hPa) assigned to good derived 
winds in atmospheric layer 1 
 CldHgtStdDev_Layer1 

43 Minimum height (hPa) assigned to good winds in atmospheric layer 1 
 CldHgtMin_Layer1 

44 Maximum height (hPa) assigned to good winds in atmospheric layer 1 
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CldHgtMax_Layer1 

45  
Standard deviation about mean wind speed (m/s) for all good derived 
winds in atmospheric layer 1 
WndSpdStdDev_Layer1 

46 
Mean height (hPa) assigned to good derived winds in atmospheric layer 
2 
 CldHgtMean_Layer2 

47 
Standard deviation about mean height (hPa) assigned to good derived 
winds in atmospheric layer 2  
CldHgtStdDev_Layer2 

48 Minimum height (hPa) assigned to good winds in atmospheric layer 2 
CldHgtMin_Layer2  

49 Maximum height (hPa) assigned to good winds in atmospheric layer 2 
 CldHgtMax_Layer2 

50  
Standard deviation about mean wind speed (m/s) for all good derived 
winds in atmospheric layer 2 
WndSpdStdDev_Layer2 

51 
Mean height (hPa) assigned to good derived winds in atmospheric layer 
3 
CldHgtMean_Layer3 

52 
Standard deviation about mean height (hPa) assigned to good derived 
winds in atmospheric layer 3 
 CldHgtStdDev_Layer3 

53 Minimum height (hPa) assigned to good winds in atmospheric layer 3  
CldHgtMin_Layer3 

54 Maximum height (hPa) assigned to good winds in atmospheric layer 3 
CldHgtMax_Layer3  

55  
Standard deviation about mean wind speed (m/s) for all good derived 
winds in atmospheric layer 3 
WndSpdStdDev_Layer3 

56 Percent good winds generated 
GoodWndClrCld 
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4 DMW OUTPUTS AND VERIFICATION 
4.1 Output from GOES-R L1B Data  
 
The DMW product is generated routinely for GOES-16 and 17 for all sectors and wind 
types as described in previous sections. The following figures 17 through 30 show 
examples of cloud-drift and water vapor winds generated from tracking either cloud or 
water vapor features observed in GOES-16 and 17 L1B imagery for a variety of channels 
and sectors.  
  
 

 
Figure 17.  GOES-16 and 17 cloud-drift winds derived from Full Disk 10-minute 11.2um 
ABI data for 00 UTC on 18 June 2019. These winds are derived from tracking cloud 
features using the 11.2um channel. High level (100-400 hPa) winds are shown in violet; 
mid-level (400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) 
are shown in yellow. 
 

 
Figure 18. GOES-16 and 17 cloud-drift winds derived from CONUS 5-minute 11.2um 
ABI data for 00 UTC on 18 June 2019. These winds are derived from tracking cloud 
features using the 11.2um channel. High level (100-400 hPa) winds are shown in violet; 
mid-level (400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) 
are shown in yellow. 
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Figure 19. GOES-16 and 17 cloud-drift winds derived from Full Disk 10-minute 6.2um 
ABI data for 00 UTC on 18 June 2019. These winds are derived from tracking cloud 
features using the 6.2um channel. High level (100-400 hPa) winds are shown in violet; 
mid-level (400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) 
are shown in yellow. 
 

 
Figure 20. GOES-16 and 17 cloud-drift winds derived from CONUS 5-minute 6.2um ABI data 
for 00 UTC on 18 June 2019. These winds are derived from tracking cloud features using the 
6.2um channel. High level (100-400 hPa) winds are shown in violet; mid-level (400-700 hPa) 
winds are shown in cyan; and low-level winds (below 700 hPa) are shown in yellow. 
 
 

 
Figure 21. GOES-16 and 17 clear-sky water vapor winds derived from Full Disk 30-minute 
6.2um ABI data for 00 UTC on 18 June 2019. These winds are derived from tracking water vapor 
features using the 6.2um channel. High level (100-400 hPa) winds are shown in violet; mid-level 
(400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) are shown in 
yellow. 
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Figure 22. GOES-16 and 17 clear-sky water vapor winds derived from CONUS 30-minute 
6.2um ABI data for 00 UTC on 18 June 2019. These winds are derived from tracking water 
vapor features using the 6.2um channel. High level (100-400 hPa) winds are shown in violet; 
mid-level (400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) are 
shown in yellow. 
 
 

 
Figure 23. GOES-16 and 17 clear-sky water vapor winds derived from Full Disk 30-minute 
6.9um ABI data for 00 UTC on 18 June 2019. These winds are derived from tracking water 
vapor features using the 6.9um channel. High level (100-400 hPa) winds are shown in violet; 
mid-level (400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) are 
shown in yellow. 
 

 
Figure 24. GOES-16 and 17 clear-sky water vapor winds derived from CONUS 30-minute 
6.9um ABI data for 00 UTC on 18 June 2019. These winds are derived from tracking water 
vapor features using the 6.9um channel. High level (100-400 hPa) winds are shown in violet; 
mid-level (400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) are 
shown in yellow. 
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Figure 25. GOES-16 and 17 clear-sky water vapor winds derived from Full Disk 30-
minute 7.3um ABI data for 00 UTC on 18 June 2019. These winds are derived from 
tracking water vapor features using the 7.3um channel. High level (100-400 hPa) winds 
are shown in violet; mid-level (400-700 hPa) winds are shown in cyan; and low-level 
winds (below 700 hPa) are shown in yellow. 
 
 
 
 
 
 

 
Figure 26. GOES-16 and 17 clear-sky water vapor winds derived from CONUS 30-
minute 7.3um ABI data for 00 UTC on 18 June 2019. These winds are derived from 
tracking water vapor features using the 7.3um channel. High level (100-400 hPa) winds 
are shown in violet; mid-level (400-700 hPa) winds are shown in cyan; and low-level 
winds (below 700 hPa) are shown in yellow. 
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Figure 27. GOES-16 and 17 cloud-drift winds derived from Full Disk 10-minute 0.64um 
ABI data for 22 UTC on 18 June 2019. These winds are derived from tracking cloud 
features using the 0.64um channel. High level (100-400 hPa) winds are shown in violet; 
mid-level (400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) 
are shown in yellow. 
 
 

 
Figure 28. GOES-16 and 17 cloud-drift winds derived from CONUS 5-minute 0.64um 
ABI data for 22 UTC on 18 June 2019. These winds are derived from tracking cloud 
features using the 0.64um channel. High level (100-400 hPa) winds are shown in violet; 
mid-level (400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) 
are shown in yellow. 
 
 

 
Figure 29. GOES-17 cloud-drift winds derived from MESO sector 5-minute ABI 6.2um 
(left) and 11.2um (right) data for 17 UTC on 04 May 2019. High level (100-400 hPa) 
winds are shown in violet; mid-level (400-700 hPa) winds are shown in cyan; and low-
level winds (below 700 hPa) are shown in yellow. 
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Figure 30. GOES-16 high resolution (spatiotemporal) cloud-drift winds derived from 
MESO sector 1-minute ABI 11.2um data for 12 UTC on 08 November 2024. High level 
(100-400 hPa) winds are shown in violet; mid-level (400-700 hPa) winds are shown in 
cyan; and low-level winds (below 700 hPa) are shown in yellow. NOTE: the plotted high  
resolution vectors shown in this image have been thinned for visual clarity.  
 
 

4.2 Output from Himawari L1B Data  
The DMW product is generated routinely for Himawari Full Disk sectors as described in 
previous sections. The following figures 30 through 36 show examples of cloud-drift and 
water vapor winds generated from tracking either cloud or water vapor features observed 
in Himawar-8 L1 imagery for a variety of channels and sectors. 
 

 
Figure 31.  Himawari-8 cloud-drift winds derived from Full Disk 10-minute 11.2um 
AHI data for 12 UTC on 31 March 2016. These winds are derived from tracking 
cloud features using the 11.2um channel. High level (100-400 hPa) winds are shown 

MESO  
High Resolution AMV 

product cadence: 
15 minutes 

 
Image triplet delta-t:  

1 minute 
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in red; mid-level (400-700 hPa) winds are shown in cyan; and low-level winds 
(below 700 hPa) are shown in yellow. 

 

 
Figure 32.  Himawari-8 cloud-top water vapor winds derived from Full Disk 10-
minute 6.2um AHI data for 12 UTC on 31 March 2016. These winds are derived 
from tracking cloud features using the 6.2um channel. High level (100-400 hPa) 
winds are shown in red and mid-level (400-700 hPa) winds are shown in cyan. 

 

  
Figure 33.  Himawari-8 clear-sky water vapor winds derived from Full Disk     
10-minute 6.2um AHI data for 12 UTC on 31 March 2016. These winds are 
derived from clear-sky water vapor gradients features using the 6.2um channel. 
High level (100-400 hPa) winds are shown in red and mid-level (400-700 hPa) 
winds are shown in cyan. 
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Figure 34.  Himawari-8 clear-sky water vapor winds derived from Full Disk     
10-minute 6.9um AHI data for 12 UTC on 31 March 2016. These winds are 
derived from clear-sky water vapor gradients features using the 6.9um channel. 
High level (100-400 hPa) winds are shown in red and mid-level (400-700 hPa) 
winds are shown in cyan. 

 

 
 

Figure 35.  Himawari-8 clear-sky water vapor winds derived from Full Disk     
10-minute 7.3um AHI data for 12 UTC on 31 March 2016. These winds are 
derived from clear-sky water vapor gradients features using the 7.3um channel. 
Mid-level (400-700 hPa) winds are shown in cyan. 
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Figure 36.  Himawari-8 cloud-top water vapor winds derived from Full Disk 10-
minute 3.9um AHI data for 13 UTC on 31 March 2016. These winds are derived 
from tracking cloud features using the 3.9um channel. High level (100-400 hPa) 
winds are shown in red; mid-level (400-700 hPa) winds are shown in cyan; and 
low-level winds (below 700 hPa) are shown in yellow. 
 

 

 
Figure 37.  Himawari-8 cloud-top water vapor winds derived from Full Disk 10-
minute 0.64um AHI data for 13 UTC on 31 March 2016. These winds are derived 
from tracking cloud features using the 0.64um channel. High level (100-400 hPa) 
winds are shown in red; mid-level (400-700 hPa) winds are shown in cyan; and 
low-level winds (below 700 hPa) are shown in yellow. 
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4.3 Output from VIIRS Level-1 SDR Data  
The DMW product is generated routinely from VIIRS Level-1 Sensor Data Record 
(SDR) data over the Arctic and Antarctic as described in previous sections. The following 
figures 37 through 38 show examples of cloud-drift winds observed in S-NPP and 
NOAA-20 VIIRS Level-1 SDR Band M15 data. 
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Figure 38. NOAA-20 cloud-drift winds derived in the Arctic from VIIRS Level-1 SDR 10.8um 
data for 1012 UTC on 27 February 2022. High level (100-400 hPa) winds are shown in violet; 
mid-level (400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) are 
shown in yellow. 

 
 

 
Figure 39. NOAA-20 cloud-drift winds derived in the Antarctic from VIIRS Level-1 SDR 
10.8um data for 0921 UTC on 27 February 2022. High level (100-400 hPa) winds are 
shown in violet; mid-level (400-700 hPa) winds are shown in cyan; and low-level winds 
(below 700 hPa) are shown in yellow. 
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4.4 Output from AVHRR-3 L1B Data  
 
The DMW product is generated routinely from AVHRR-3 L1b over the Arctic and 
Antarctic as described in previous sections. The following figures 39 through 40 show 
examples of cloud-drift winds observed in Metop-C AVHRR-3 L1b Band 4 data. 
 

 
 

Figure 40. Metop-C cloud-drift winds derived in the Arctic from AVHRR-3 L1b 10.8um data for 
2105 UTC on 21 February 2022. High level (100-400 hPa) winds are shown in violet; mid-level 
(400-700 hPa) winds are shown in cyan; and low-level winds (below 700 hPa) are shown in 
yellow. 
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Figure 41. Metop-C cloud-drift winds derived in the Antarctic from AVHRR-3 L1b 
10.8um data for 2151 UTC on 21 February 2022. High level (100-400 hPa) winds are 
shown in violet; mid-level (400-700 hPa) winds are shown in cyan; and low-level winds 
(below 700 hPa) are shown in yellow. 

 

4.5 Precision and Accuracy Estimates 
 
This section describes the predicted performance and product quality of the DMWA 
relative to the DMW specifications found within the GOES-R Functional and 
Performance Specification Document (F&PS). To estimate the precision and accuracy of 
the DMW product requires coincident measurements of reference (“truth”) atmospheric 
winds values for the full range of observing geometry and environmental conditions that 
cover multiple seasons.  
 
The reference (“truth”) datasets used include radiosonde wind observations and Global 
Forecast System (GFS) analyses winds. The radiosonde wind observations are used 
primarily to validate the DMW product over land and coastal regions. A 
DMW/radiosonde wind collocation is considered a valid match if the radiosonde 
observation is within one hour in time within 150km in the horizontal, and within 50 hPa 
in the vertical of the DMW. The GFS model analysis wind fields are used to measure the 
performance of the DMW product over oceanic regions. Here, the analysis winds must be 
within 30 minutes of the DMW, and are spatially (horizontally and vertically) 
interpolated to the DMW location. An advantage of this approach is that a 
DMW/Analysis wind collocation match can be generated for every DMW produced. 
 
The accuracy and precision estimates for the DMW products are determined by 
computing the Mean Vector Difference (MVD) and Standard Deviation (SD) metrics. 
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The mean vector difference between retrieved and reference (“truth”) wind representing 
the accuracy (average error) of the GOES-R ABI wind product is computed from: 
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                                          ui = u-component of satellite wind 
                                          vi = v-component of satellite wind 
                                          ur = u-component of the reference wind 
                                          vr = v-component of the reference winds 
                                          N = size of collocated sample 
                                           
The Standard Deviation (SD) about the mean vector difference between the retrieved 
GOES-R ABI DMW product and the reference wind data represents the precision 
(random error) of the ABI DMW product and is computed from: 
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Certainly, assessment of algorithm performance depends on the validation samples from 
which the comparison statistics are derived. For example, validation of DMW products 
performed at different locations, heights in the atmosphere, different wind speeds, or 
local zenith angle could generate different accuracy and precision values for the same 
algorithm. The accuracy and precision of the DMW product will depend largely on a 
number things that include: (1) Calibration and navigation accuracy of the ABI 
measurements, (2) ABI band that is used for feature tracking, (3) Height of the DMW in 
the atmosphere, and (4) Accuracy and precision of the input ABI cloud mask and cloud 
height products.  
 
 
Comparisons of GOES-16/17 ABI DMW Products to Radiosonde Wind Observations 
 
Tables 14-20 show the seasonal Full Disk DMW product validation results as a function 
ABI band used for the time period December, 2018 to November, 2019 when using 
collocated 00 and 12 UTC radiosonde wind observations as reference/ground truth. These 
tables include the accuracy and precision metrics and speed bias metric, which is of 
particular interest to the NWP user community.  
 
Seasonal comparison statistics for the low level DMWs computed using the visible band 
are shown in Table 14. These statistics indicate that these visible DMWs possess some 
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small seasonal dependence. The accuracy and speed bias metrics displayed here indicate 
that visible DMWs are of high quality at levels of the atmosphere below 700 hPa and will 
contribute to improving NWP forecast performance when properly assimilated into NWP 
data assimilation systems.  
 
Table 14. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 2 
(0.64um) DMWs and radiosonde wind observations for Winter (Nov 2018 - Feb 2019), 
Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 2019 - 
Nov 2019). 
 

Low Level 
(P > 
700hPa)   

GOES-16 
Visible (0.64um) Winds vs. Radiosonde 
Winds 

GOES-17 
Visible (0.64um) Winds vs. 
Radiosonde Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy(m/s) 3.41 3.27 3.14 3.33 3.57 3.62 3.74 3.62 
Precision (m/s) 2.43 2.23 2.14 2.25 2.45 2.37 2.50 2.43 
Spd bias(m/s) 0.83 0.31 0.27 0.76 0.89 1.06 1.17 1.03 
Speed (m/s) 8.76 8.73 8.46 8.13 8.90 7.94 7.82 8.13 
Sample 67852 165191 250326 172362 85929 175731 253191 160377 

 
 
The comparison statistics for the low level DMWs computed using the SWIR band are 
shown in Table 15. Like the visible DMWs, the SWIR winds are derived at low levels of 
the atmosphere below 700 hPa. Their performance in terms of accuracy and precision is 
very similar to the performance of the visible DMWs. This is an important result as these 
two datasets are complimentary given that the visible DMWs are generated during 
daytime and the SWIR DMWs are generated during nighttime. This behavior is very 
important in terms of their use and potential impact in NWP data assimilation systems. 
 
 
Table 15. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 7 
(3.9um) DMWs and radiosonde wind observations for Winter (Nov 2018 - Feb 2019), 
Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 2019 - 
Nov 2019).  
 

Low Level 
(P > 700hPa)   

GOES-16 
SWIR (3.9um) Winds vs. 
Radiosonde Winds 

GOES-17 
SWIR (3.9um) Winds vs.  
Radiosonde Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy(m/s) 3.27 3.36 3.17 3.29 3.81 3.65 3.86 3.76 
Precision (m/s) 2.21 2.25 2.12 2.20 2.39 2.34 2.36 2.45 
Spd bias(m/s) -0.26 0.22 0.12 -0.05 0.42 0.89 1.46 0.93 
Speed (m/s) 10.22 9.33 9.32 9.22 9.53 7.82 8.10 8.17 
Sample 35603 14940 13038 26522 12554 10437 12086 11598 
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The comparison statistics for the DMWs computed using the LWIR band are shown in 
Table 16. The comparison statistics are shown for all levels of the atmosphere and are 
also broken down as a function of height in the atmosphere. The DMW metrics shown 
indicate some seasonal dependence, but this is not unexpected and reflects the seasonal 
changes in average wind speeds. When the LWIR DMW performance is evaluated as a 
function of height in the atmosphere, the magnitudes of the accuracy and precision 
metrics are observed to be smallest in the lower atmosphere and increase with height. 
This also indicates that the performance of the DMWs vary as a function of wind speed.  
 
Table 16. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 14 
(11.2um) DMWs and radiosonde wind observations for Winter (Nov 2018 - Feb 2019), 
Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 2019 - 
Nov 2019).   
 

All Levels 
(100-1000 hPa) 

GOES-16  
LWIR (11.2um) Winds vs.  
Radiosonde Winds 

GOES-17  
LWIR (11.2um) Winds vs. Radiosonde 
Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy(m/s) 5.06 5.00 4.72 4.90 4.97 4.78 4.60 4.89 
Precision(m/s) 3.50 3.38 3.16 3.27 3.28 3.19 3.02 3.21 
Spd bias(m/s) -0.59 -0.50 -0.40 -0.71 -0.04 -0.09 -0.10 -0.47 
Speed (m/s) 21.78 19.62 15.55 18.07 22.04 18.72 14.46 18.75 
Sample 431815 526418 649222 637964 206048 223802 313256 294072 
High Level 
(100-400 hPa) 

       
Winter Spring Summer Fall Winter Spring Summer Fall 

Accuracy(m/s) 5.63 5.39 5.11 5.25 5.29 5.12 4.91 5.22 
Precision (m/s) 3.65 3.48 3.28 3.36 3.32 3.28 3.14 3.27 
Spd bias(m/s) -0.94 -0.70 -0.53 -1.00 -0.25 -0.20 -0.30 -0.77 
Speed (m/s) 26.52 22.66 17.48 20.26 27.87 23.72 16.68 22.12 
Sample 270798 369345 471872 453795 121220 133985 217518 195491 
Mid Level 
(400-700 hPa)   

 
Winter Spring Summer Fall Winter Spring Summer Fall 

Accuracy(m/s) 5.03 4.76 4.08 4.67 5.27 5.01 4.35 4.88 
Precision (m/s) 3.41 3.24 2.72 3.18 3.53 3.37 2.90 3.32 
Spd bias(m/s) 0.16 -0.09 -0.27 -0.09 0.02 -0.29 -0.05 -0.27 
Speed (m/s) 18.06 15.61 12.03 16.37 17.75 14.53 11.47 15.86 
Sample 74045 79740 84286 91831 44761 44380 38935 49563 
Low Level 
(700-1000 hPa)   

       
Winter Spring Summer Fall Winter Spring Summer Fall 

Accuracy(m/s) 3.34 3.42 3.31 3.40 3.69 3.52 3.56 3.55 
Precision (m/s) 2.33 2.38 2.30 2.34 2.46 2.30 2.35 2.39 
Spd bias(m/s) -0.14 0.03 0.10 0.06 0.52 0.44 0.67 0.53 
Speed (m/s) 10.18 9.26 8.97 9.04 9.21 8.08 8.04 8.24 
Sample 86972 77333 93064 92338 40067 45437 56803 49018 
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The comparison statistics for the cloud-top water vapor DMWs computed using the 
6.2um band are shown in Table 17. The comparison statistics are shown only for upper 
levels of the atmosphere above 400 hPa since these winds are only generated above 400 
hPa. The DMW metrics indicate some seasonal dependence. More importantly, the 
statistics indicate these vectors are of good quality and the performance of these cloud-
top DMWs is likely to contribute to improving NWP forecast performance when properly 
assimilated into NWP data assimilation systems.  
 
 
Table 17. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 8 
(6.2um) Cloud-top DMWs and radiosonde wind observations for Winter (Nov 2018 - Feb 
2019), Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 
2019 - Nov 2019).  
 

High Level 
(100-400 
hPa)   

GOES-16 
Cloud-top Water Vapor (6.2um) 
Winds vs. Radiosonde Winds 

GOES-17 
Cloud-top Water Vapor (6.2um) Winds 
vs. Radiosonde Winds) 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy(m/s) 5.57 5.27 5.11 5.11 5.36 5.24 5.02 5.19 
Precision (m/s) 3.59 3.40 3.27 3.28 3.29 3.25 3.15 3.24 
Spd bias(m/s) -0.35 0.00 0.17 -0.29 0.31 0.56 0.49 0.08 
Speed (m/s) 27.56 23.75 18.40 20.67 29.39 25.77 17.85 22.67 
Sample 290686 381274 499010 495560 99511 109922 193632 164064 

 
 
The comparison statistics for the clear-sky water vapor DMWs computed using the 
6.2um, 6.9um, and 7.3um bands are shown in Tables 18 - 20. The comparison statistics 
for the 6.2um clear-sky DMWs are shown only for upper levels of the atmosphere above 
400 hPa since these winds are only generated above 400 hPa. The comparison statistics 
for the 6.9um clear-sky DMWs are shown for the atmospheric layer above 400 hPa and 
the layer between 400 hPa and 700 hPa, since these are the layers over which these winds 
are generated and most representative. The comparison statistics for the 7.3um clear-sky 
DMWs are shown only for the atmospheric layer between 400 hPa and 700 hPa, since 
this is the layer over which these winds are generated and most representative.  
 
All sets of clear-sky DMW metrics indicate the performance of the clear-sky DMWs will 
vary by season with the most challenging season being winter when the atmosphere is 
much drier. It is clear from these statistics that the clear-sky DMWs are the most 
challenging to derive. The primary reason for this is that the feature being tracked in 
these cases is a clear-sky moisture gradient which lacks a sharp radiometric signal 
typically observed with clouds. Complicating matters further is the fact that the 
radiometric signal being tracked emanates from a rather broad layer of the atmosphere. 
Thus, the motion retrieved from tracking clear-sky water vapor features is more 
representative of the average motion over a broad atmospheric layer. Statistical 
comparisons of these DMWs versus single level reference/ground truth wind 



 95 

observations like radiosondes, then, reflect this phenomenon with the result being slightly 
worse performance (e.g., lower accuracy and reduced precision). 
 
 
Table 18. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 8 
(6.2um) Clear-Sky DMWs and radiosonde wind observations for Winter (Nov 2018 - Feb 
2019), Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 
2019 - Nov 2019).  
 

 High Level 
(100 - 400 
hPa)   

GOES-16 
Clear-sky Water Vapor (6.2um) 
Winds vs. Radiosonde Winds 

GOES-17 
Clear-sky Water Vapor (6.2um) 
Winds vs. Radiosonde Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy(m/s) 5.61 5.38 5.16 5.08 5.87 5.57 5.16 5.30 
Precision (m/s) 3.80 3.71 3.67 3.54 4.10 3.78 3.55 3.77 
Spd bias(m/s) -0.54 -0.78 -0.63 -0.74 -0.85 -0.38 -0.38 -0.61 
Speed (m/s) 19.66 17.79 15.63 16.83 21.53 19.61 16.65 17.83 
Sample 36746 39443 63396 65103 15922 17064 30291 27724 
 
 
Table 19. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 9 
(6.9um) Clear-Sky DMWs and radiosonde wind observations for Winter (Nov 2018 - Feb 
2019), Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 
2019 - Nov 2019).  
 
 

 
HighLevel 
(100 - 400 hPa)   

GOES-16 
Clear-sky Water Vapor (6.9um) 
Winds vs. Radiosonde Winds 

GOES-17 
Clear-sky Water Vapor (6.9um) 
Winds vs. Radiosonde Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy(m/s) 5.09 4.84 4.55 4.53 5.44 5.26 4.85 4.95 
Precision(m/s) 3.29 3.19 3.09 3.00 3.41 3.38 3.26 3.22 
Spd bias(m/s) 0.26 0.23 -0.03 -0.12 0.41 0.39 0.23 0.17 
Speed (m/s) 16.95 15.69 13.95 14.73 20.99 18.22 14.64 16.69 
Sample 17138 19021 56265 49400 13052 15291 37543 30261 
Mid level 
(400 -700 hPa) 

  

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy(m/s) 5.62 5.64 5.52 5.54 5.94 5.58 5.09 5.68 
Precision (m/s) 3.85 3.83 3.75 3.82 4.13 3.77 3.52 4.08 
Spd bias(m/s) -0.76 -0.94 -0.75 -0.96 -1.23 -0.87 -0.94 -1.22 
Speed (m/s) 17.47 16.25 14.94 16.89 16.93 15.54 12.93 14.98 
Sample 32144 26667 16812 24169 14687 11747 6089 10531 
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Table 20. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 10 
(7.3um) Clear-Sky DMWs and radiosonde wind observations for Winter (Nov 2018 - Feb 
2019), Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 
2019 - Nov 2019).  
 

Mid Level 
(400 - 
700hPa)   

GOES-16 
Clear-sky Water Vapor (7.3um) Winds 
vs. Radiosonde Winds 

GOES-17 
Clear-sky Water Vapor (7.3um) Winds 
vs. Radiosonde Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy(m/s) 5.28 4.87 4.74 4.73 5.66 4.98 4.71 5.12 
Precision (m/s) 3.33 3.15 3.20 3.04 3.61 3.13 3.00 3.15 
Spd bias(m/s) -0.61 -0.54 -0.54 -0.55 -1.14 -0.73 -1.81 -1.37 
Speed (m/s) 15.50 13.27 12.56 14.52 17.48 14.64 8.78 13.35 
Sample 8862 9890 8690 12918 1829 1956 1817 2326 

 
 
Comparisons of GOES-16/17 ABI DMW Products to GFS Analysis Winds 
 
Tables 21-27 show Full Disk DMW product validation results as a function of ABI band 
used broken down by season (Winter: Dec 2018 - Feb 2019, Spring: Mar 2019 - May 
2019, Summer: Jun 2019 - Aug 2019 and Fall: Sept 2019 - Nov 2019) when using 
collocated NCEP GFS analysis winds as reference/ground truth.  These tables include the 
accuracy and precision metrics and speed bias metric which is of particular interest to the 
NWP user community. It needs to be noted that use of NCEP GFS analysis winds as the 
reference/ground truth wind observations leads to smaller magnitudes in the accuracy and 
precision metrics as compared to the magnitudes of these metrics when using radiosonde 
wind observations. Two reasons likely contribute to this. First, the horizontal and 
temporal resolution of the GFS analysis wind field is much coarser than the radiosonde 
wind observations and second, the GFS analysis wind field is influenced by a number of 
satellite-derived winds as these are assimilated operationally by NCEP. Despite this, 
these comparison statistics still provide a useful measure of the performance of the 
DMWA. 
 
The comparison statistics for the low level DMWs computed using the visible band are 
shown in Table 21. The accuracy and precision values of these DMWs shown in the table 
indicate the visible DMWs possess a very small seasonal dependence which is consistent 
with what was observed when comparing these winds to radiosonde wind observations.   
 
The comparison statistics for the low level DMWs computed using the SWIR band are 
shown in Table 22. Like the visible DMWs, the SWIR winds are derived at low levels of 
the atmosphere below 700 hPa. Their performance in terms of accuracy and precision is 
very similar to the performance of the visible DMWs.  As previously mentioned, this is 
an important result as these two datasets are complimentary given that the visible DMWs 
are generated during daytime and the SWIR DMWs are generated during nighttime. This 
behavior is very important in terms of their use and potential impact in NWP data 
assimilation systems. 
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Table 21. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 2 
(0.64um) DMWs and NCEP GFS Analysis winds for Winter (Dec 2018 - Feb 2019), 
Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 2019 - 
Nov 2019).  
 

Low Level 
(P > 700hPa)   

GOES-16 
Visible (0.64um) Winds vs. GFS 
Analysis Winds 

GOES-17 
Visible (0.64um) Winds vs. GFS 
Analysis Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy (m/s) 1.48 1.54 1.45 1.47 1.43 1.58 1.51 1.42 
Precision (m/s) 1.01 1.06 1.02 0.98 0.99 1.07 1.01 0.96 
Speed bias(m/s) 0.10 0.18 0.12 0.08 0.12 -0.05 -0.07 0.03 
Speed (m/s) 9.10 8.82 8.66 8.86 9.33 9.56 7.76 8.23 
Sample (m/s) 12124642 7285533 11809327 13906206 8163821 3518028 3497952 1308351 

 
 
 
Table 22. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 7 
(3.9um) DMWs and NCEP GFS Analysis winds for Winter (Dec 2018 - Feb 2019), 
Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 2019 - 
Nov 2019).  
 

Low Level 
(P > 700hPa)   

GOES-16 
SWIR (3.9um) Winds vs. GFS 
Analysis Winds 

GOES-17 
SWIR (3.9um) Winds vs. GFS 
Analysis Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy (m/s) 1.49 1.32 1.34 0.90 1.42 1.57 1.52 1.59 
Precision (m/s) 1.06 0.96 1.00 2.90 1.01 1.08 1.02 1.09 
Speed bias(m/s) 0.17 0.19 0.16 0.21 0.23 0.13 0.09 0.15 
Speed (m/s) 9.50 8.77 10.15 8.78 9.25 9.37 9.52 8.63 
Sample (m/s) 3991925 1315380 1354233 1348068 6569406 1901978 1502868 3046479 

 
The comparison statistics for the DMWs computed using the LWIR band are shown in 
Table 23. The comparison statistics are shown for all levels of the atmosphere and are 
also broken down as a function of height in the atmosphere. Conclusions to be drawn 
from these statistics are similar to those drawn from statistics computed between these 
winds and radiosonde wind observations. The DMW metrics indicate some seasonal 
dependence which reflects the fact that the average wind speeds are higher in Winter than 
in Summer. When the LWIR DMW performance is evaluated as a function of height in 
the atmosphere, the magnitudes of the accuracy and precision metrics are observed to be 
smallest in the lower atmosphere and increase with height. This also indicates that the 
performance of the DMWs vary as a function of wind speed.  
 
 



 98 

Table 23. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 14 
(11.2um) DMWs and NCEP GFS Analysis winds for Winter (Dec 2018 - Feb 2019), 
Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 2019 - 
Nov 2019).  
 

All Levels 
(100-1000 hPa) 

GOES-16  
LWIR (11.2um) Winds vs.  
GFS Analysis Winds 

GOES-17  
LWIR (11.2um) Winds vs. GFS Analysis 
Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 

Accuracy(m/s) 2.39 2.39 2.27 2.45 2.73 2.48 2.36 2.44 
Precision (m/s) 1.92 1.97 1.96 2.19 2.33 1.98 1.86 2.04 
Spd bias(m/s) 0.18 0.18 0.20 0.15 -0.19 0.17 0.21 -0.61 
Speed (m/s) 15.91 15.96 13.72 14.22 20.58 15.46 12.76 13.90 
Sample  9737169 6105279 13159440 12630615 14633289 3416027 3526524 16370733 

High Level 
(100-400 hPa) 

 
Winter Spring Summer Fall Winter Spring Summer Fall 

Accuracy(m/s) 3.14 2.95 3.02 3.07 3.58 3.41 3.20 3.33 
Precision (m/s) 2.04 1.96 2.00 2.10 2.37 2.13 2.06 2.13 
Spd bias(m/s) 0.17 0.21 0.34 0.23 -0.45 0.31 0.42 -0.27 
Speed (m/s) 22.43 21.33 18.58 18.74 31.20 22.91 16.65 20.06 
Sample  4207188 3135530 5267811 5766423 5978934 1335480 1280826 6299127 

Mid Level 
(400-700 hPa)   

 
Winter Spring Summer Fall Winter Spring Summer Fall 

Accuracy(m/s) 3.45 3.37 3.26 3.50 3.89 3.57 3.33 3.55 
Precision (m/s) 2.19 2.21 2.13 2.52 2.46 2.30 2.13 2.32 
Spd bias(m/s) 0.40 0.31 0.07 0.25 -0.43 0.77 0.44 -0.97 
Speed (m/s) 18.15 16.09 14.45 16.78 21.00 18.68 15.71 17.82 
Sample  894588 493638 1298280 1211577 1252746 314948 292525 1294944 
Low Level 
(700-1000 hPa)   

 
Winter Spring Summer Fall Winter Spring Summer Fall 

Accuracy(m/s) 1.50 1.49 1.47 1.59 1.64 1.58 1.66 1.65 
Precision (m/s) 1.25 1.55 1.52 1.87 1.70 1.24 1.29 1.53 
Spd bias(m/s) 0.14 0.11 0.12 0.05 0.10 -0.05 0.05 -0.79 
Speed (m/s) 9.57 9.06 9.70 9.10 11.02 9.26 9.76 8.89 
Sample  4635393 2476111 6593349 5652615 7401609 1765599 1954173 8776662 

 
The comparison statistics for the cloud-top water vapor DMWs computed using the 
6.2um band are shown in Table 24. The comparison statistics are shown only for upper 
levels of the atmosphere above 400 hPa since these winds are only generated above 400 
hPa. The metrics here indicate little to no seasonal dependence with respect to the 
performance of the DMWs when using this channel to track clouds. Positive speed biases 
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are evident from these comparison stats which indicate the DMWs are faster than the 
GFS analysis. The exact reasons for this are not known. Positive speed biases for these 
DMWs, however, were not evident in the DMW/radiosonde wind comparison statistics 
shown in Table 17. 
 
 
Table 24. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 8 
(6.2um) Cloud-top DMWs and NCEP GFS Analysis winds for Winter (Dec 2018 - Feb 
2019), Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 
2019 - Nov 2019).  
 

High Level 
(100-400 
hPa 

GOES-16 
Cloud-top Water Vapor (6.2um) 
Winds vs. GFS Analysis Winds 

GOES-17 
Cloud-top Water Vapor (6.2um) 
Winds vs. GFS Analysis Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy m/s) 3.36 3.15 3.19 3.69 3.29 3.44 3.46 3.48 
Precision (m/s) 2.16 2.08 2.07 2.27 2.21 2.14 2.18 2.22 
Spd bias(m/s) 1.02 0.97 1.02 1.00 0.93 0.78 1.03 0.82 
Speed (m/s) 22.86 21.10 19.37 25.64 24.35 22.63 16.99 20.74 
Sample  4582260 1238696 5508027 140253 2628324 1602736 1955476 718893 
 
 
The comparison statistics for the clear-sky water vapor DMWs computed using the 
6.2um, 6.9um, and 7.3um bands are shown in Tables 25 - 27. The comparison statistics 
for the 6.2um clear-sky DMWs are shown only for upper levels of the atmosphere above 
400 hPa since these winds are only generated above 400 hPa. The comparison statistics 
for the 6.9um clear-sky DMWs are shown for the atmospheric layer above 400 hPa and 
the layer between 400 hPa and 700 hPa, since these are the layers over which these winds 
are generated and most representative. The comparison statistics for the 7.3um clear-sky 
DMWs are shown only for the atmospheric layer between 400 hPa and 700 hPa, since 
this is the layer over which these winds are generated and most representative.  
 
The DMW metrics indicate that the performance of the clear-sky DMWs will vary 
slightly by season with the most challenging season being winter when the atmosphere is 
much drier. It is clear from these statistics that the clear-sky DMWs are the most 
challenging to derive. As previously discussed, the primary reason for this is that the 
feature being tracked in these cases is a clear-sky moisture gradient which lacks a sharp 
radiometric signal typically observed with clouds. Complicating matters further is the fact  
that the radiometric signal being tracked emanates from a rather broad layer of the 
atmosphere. Thus, the motion retrieved from tracking clear-sky water vapor features is 
more representative of the average motion over a broad atmospheric layer. Statistical 
comparisons of these DMWs with single level reference/ground truth wind observations 
like radiosondes or even GFS analysis then, reflect this phenomenon with the result being 
slightly worse performance (e.g., lower accuracy and reduced precision). 
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Table 25. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 8 
(6.2um) Clear-Sky DMWs and NCEP GFS Analysis winds for Winter (Dec 2018 - Feb 
2019), Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 
2019 - Nov 2019).  
 

High Level 
(100 - 400 
hPa) 

GOES-16 
Clear-sky Water Vapor (6.2um) 
Winds vs. GFS Analysis Winds 

GOES-17 
Clear-sky Water Vapor (6.2um) 
Winds vs. GFS Analysis Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy (m/s) 3.64 3.48 3.52 3.63 3.61 3.80 3.55 3.80 
Precision (m/s) 2.53 2.47 2.52 2.55 2.49 2.60 2.44 2.58 
Speed bias(m/s) 0.20 -0.34 -0.15 -0.16 0.17 -0.34 -0.04 -0.20 
Speed (m/s) 17.76 16.60 15.94 16.94 17.75 18.57 15.55 17.21 
Sample  592974 381804 1318725 1338984 620334 361793 316743 853809 
Mid Level 
(400-700 hPa) 

 
Winter Spring Summer Fall Winter Spring Summer Fall 

Accuracy (m/s) 4.12 4.54 4.01 4.10 4.32 4.85 4.33 4.89 
Precision (m/s) 2.88 3.10 2.87 2.89 2.93 3.22 2.86 3.18 
Speed bias(m/s) -0.99 -1.45 -0.91 -1.13 -1.02 -1.49 -1.36 -1.72 
Speed (m/s) 18.92 17.94 19.31 18.61 20.01 20.81 20.33 19.91 
Sample  33831 14054 107751 84405 40134 36523 37497 59301 

 
 
Table 26. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 9 
(6.9um) Clear-Sky DMWs and NCEP GFS Analysis winds for Winter (Dec 2018 - Feb 
2019), Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 
2019 - Nov 2019).  
 

High  Level 
(100 - 400 
hPa)   

GOES-16 
Clear-sky Water Vapor (6.9um) 
Winds vs. GFS Analysis Winds 

GOES-17 
Clear-sky Water Vapor (6.9um) 
Winds vs. GFS Analysis Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy (m/s) 3.57 3.30 3.20 3.51 3.46 3.76 3.30 3.61 
Precision (m/s) 2.51 2.42 2.33 2.51 2.47 2.59 2.33 2.48 
Speed bias(m/s) 0.75 0.44 0.32 0.40 0.65 0.64 0.38 0.32 
Speed (m/s) 16.51 15.02 13.46 15.17 16.55 16.62 13.62 15.60 
Sample (m/s) 511752 122074 1031586 879936 504810 312708 368352 757131 
Mid Level 
(400-700 hPa) 

 
Winter Spring Summer Fall Winter Spring Summer Fall 

Accuracy (m/s) 3.56 3.57 3.52 3.73 3.38 3.94 3.79 3.99 
Precision (m/s) 2.58 2.79 2.48 2.81 2.54 2.78 2.57 2.75 
Speed bias(m/s) -0.13 -0.29 -0.15 -0.41 -0.24 -0.52 -0.49 -0.68 
Speed (m/s) 16.58 16.71 16.95 16.79 16.50 16.76 17.16 16.33 
Sample  468186 80117 523392 579129 543066 301567 273900 695481 
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Table 27. Seasonal comparison statistics between GOES-16/GOES-17 Full Disk Band 10 
(7.3um) Clear-Sky DMWs and NCEP GFS Analysis winds for Winter (Dec 2018 - Feb 
2019), Spring (Mar 2019 - May 2019), Summer (Jun 2019 - Aug 2019) and Fall (Sept 
2019 - Nov 2019).  
 

Mid Level 
(400 - 700 
hPa)   

GOES-16 
Clear-sky Water Vapor (7.3um) 
Winds vs. GFS Analysis Winds 

GOES-17 
Clear-sky Water Vapor (7.3um) 
Winds vs. GFS Analysis Winds 

Winter Spring Summer Fall Winter Spring Summer Fall 
Accuracy (m/s) 3.42 3.17 3.20 3.48 3.29 3.53 3.49 3.79 
Precision (m/s) 2.41 2.30 2.29 2.43 2.37 2.35 2.24 2.37 
Speed bias(m/s) -0.03 -0.03 0.24 -0.11 0.27 0.01 -0.13 -0.43 
Speed (m/s) 13.87 12.16 11.78 14.24 12.55 13.25 11.48 11.75 
Sample 69405 62666 72684 93792 21486 23510 33915 48441 

 
 
Comparisons of Himawari-8 AHI DMW Products to Radiosonde Wind Observations 
 
Tables 28-29 show the Full Disk DMW product validation results as a function AHI band 
used for the time period March 24-31, 2021, 2018 when using collocated 00 and 12 UTC 
radiosonde wind observations as reference/ground truth. These tables include the 
accuracy and precision metrics and speed bias metric, which is of particular interest to the 
NWP user community.  
 
 
Table 28 Himawari-8 Full Disk DMW product validation results as a function AHI bands 
used for cloudy target scenes for the time period March 24-31, 2021.  
 

All Levels 
(100-1000 hPa) 

Band 14 
(11.2um) 

Band 8 
(6.2um;WVCT) 

Band 3 
(0.64um) 

Band 7 
(3.9um) 

Accuracy (m/s) 5.16 5.12 4.33 3.79 
Precision (m/s) 3.62 3.52 3.20 2.68 
Speed bias (m/s) -0.54 0.38 0.51 0.52 
Speed (m/s) 14.40 16.55 9.34 8.18 
Sample 98569 89944 75225 12420 

High Level 
(100-400 hPa) 

 

Accuracy (m/s) 5.33 5.12 N/A N/A 
Precision (m/s) 3.68 3.52 N/A N/A 
Speed bias (m/s) -0.66 0.38 N/A N/A 
Speed (m/s) 15.86 16.55 N/A N/A 
Sample 72646 89944 N/A N/A 

Mid Level 
(400-700 hPa)   

 

Accuracy (m/s) 5.50 N/A N/A N/A 
Precision (m/s) 3.84 N/A N/A N/A 
Speed bias (m/s) -1.46 N/A N/A N/A 
Speed (m/s) 13.50 N/A N/A N/A 
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Sample 8940 N/A N/A N/A 
Low Level 

(700-1000 hPa)   
 

Accuracy (m/s) 4.27 N/A 4.33 3.79 
Precision (m/s) 3.08 N/A 3.20 2.68 
Speed bias (m/s) 0.45 N/A 0.52 0.52 
Speed (m/s) 8.64 N/A 9.34 8.18 
Sample 16983 N/A 75215 12418 

 
 
Table 29 Himawari-8 Full Disk DMW product validation results as a function AHI bands 
used for clear-sky target scenes for the time period March 24-31, 2021.  
 

All Levels 
(100-1000 hPa) 

Band 8  
(6.2um) 

Band 9  
(6.9um) 

Band 10 
(7.3um) 

Accuracy (m/s) 5.17 4.97 5.50 
Precision (m/s) 4.14 3.31 3.28 
Speed bias (m/s) -0.44 -0.14 -0.28 
Speed (m/s) 15.33 14.93 12.14 
Sample 5029 5423 1550 

High Level 
(100-400 hPa) 

   

Accuracy (m/s) 5.17 4.88 N/A 
Precision (m/s) 4.14 3.21 N/A 
Speed bias (m/s) -0.44 0.03 N/A 
Speed (m/s) 15.33 15.77 N/A 
Sample 5029 2697 N/A 

Mid Level 
(400-700 hPa)   

   

Accuracy (m/s) N/A 5.06 5.50 
Precision (m/s) N/A 3.41 3.28 
Speed bias (m/s) N/A -0.32 -0.28 
Speed (m/s) N/A 14.09 12.14 
Sample N/A 2726 1550 

 
 
 
Comparisons of S-NPP and NOAA-20 VIIRS DMW Products to Radiosonde Wind 
Observations 
 
Table 30 shows the DMW product validation results for the time period July 5-29, 2018 
using collocated 00 and 12 UTC radiosonde wind observations as reference/ground truth. 
These tables include the accuracy and precision metrics and speed bias metric, which is 
of particular interest to the NWP user community.  
 
 
 
Table 30 S-NPP and NOAA-20 DMW (band M15; 10.8um) product validation results for 
the time period July 5-29, 2018.  
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All Levels 

(100-1000 hPa) 
 

S-NPP 
 

NOAA-20 
Accuracy (m/s) 5.79 5.99 
Precision (m/s) 3.58 3.64 
Speed bias (m/s) 1.03 1.02 
Speed (m/s) 20.44 20.19 
Sample 4668 3860 

High Level 
(100-400 hPa) 

  

Accuracy (m/s) 6.39 6.36 
Precision (m/s) 3.76 3.82 
Speed bias (m/s) 1.33 1.23 
Speed (m/s) 23.85 23.71 
Sample 2085 2073 

Mid Level 
(400-700 hPa)   

  

Accuracy (m/s) 5.42 5.79 
Precision (m/s) 3.40 3.47 
Speed bias (m/s) 0.81 0.53 
Speed (m/s) 18.85 17.93 
Sample 2071 1190 

Low Level 
(700-1000 hPa)   

  

Accuracy (m/s) 4.81 5.10 
Precision (m/s) 3.13 3.16 
Speed bias (m/s) 0.66 1.28 
Speed (m/s) 12.56 12.47 
Sample 512 597 

 
 
 
Comparisons of Metop-B/C AVHRR DMW Products to Radiosonde Wind Observations 
 
Table 31 shows the DMW product validation results for the time period March 24-31, 
2021, using collocated 00 and 12 UTC radiosonde wind observations as reference/ground 
truth. These tables include the accuracy and precision metrics and speed bias metric, 
which is of particular interest to the NWP user community.  
 
 
Table 31 Metop-C DMW (band 4; 10.8um) product validation results for the time period 
November 28 – December 26, 2021.  
 

All Levels 
(100-1000 hPa) 

 
Metop-B 

 
Metop-C 

 Arctic Antarctic Arctic Antarctic 
Accuracy (m/s) 5.54 5.89 5.84 5.28 
Precision (m/s) 3.20 3.71 3.39 2.94 
Speed bias (m/s) -0.06 -0.04 0.24 -0.57 
Speed (m/s) 11.84 13.60 13.81 13.03 
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Sample 4164 1579 3416 2401 
High Level 

(100-400 hPa) 
 

Accuracy (m/s) 5.81 6.34 6.17 5.51 
Precision (m/s) 3.40 3.87 3.70 3.06 
Speed bias (m/s) -0.30 -1.66 -0.59 -0.83 
Speed (m/s) 18.22 22.88 18.42 19.67 
Sample 1343 357 1507 813 

Mid Level 
(400-700 hPa)   

 

Accuracy (m/s) 5.68 5.07 5.50 5.04 
Precision (m/s) 3.14 3.13 3.00 2.96 
Speed bias (m/s) -0.01 -0.43 1.33 -0.76 
Speed (m/s) 12.23 13.22 12.87 11.27 
Sample 671 578 776 760 

Low Level 
(700-1000 hPa)   

 

Accuracy (m/s) 5.32 6.37 5.63 5.26 
Precision (m/s) 3.07 3.97 3.49 2.79 
Speed bias (m/s) 0.06 1.21 0.60 -0.14 
Speed (m/s) 7.74 8.80 8.31 8.11 
Sample 2150 644 1133 828 

 

4.6 Error Budget 
 
The DMW products are considered validated at the 100% level if the overall accuracy 
and precision of the wind product satisfies the specified accuracy and precision 
requirements specified within the appropriate satellite series requirement documents. 
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5 PRACTICAL CONSIDERATIONS 
5.1 Numerical Computation Considerations 
 
The pattern matching performed by the DMWA is the most computationally expensive 
aspect of the entire derivation process. It is natural then to focus on this step when 
considering ways to improve the overall performance of the algorithm.  
 
Major efficiency upgrades have recently been made to the tracking portion of the AMV 
algorithm resulting in a 25% improvement in the processing times.  One recent upgrade, 
the spiral search, terminates the sum-of-squared differences (SSD) calculation early once 
a current minimum value has been exceeded. The rationale for terminating the 
summation early is that any additional calculations would simply increase the summation 
value above the current minimum. 
 
A second implemented upgrade has been to begin the search for the minimum SSD value 
at the forecast location and "spiral" outwards instead of starting at the top left corner of 
the search region where the SSD value is typically much larger.  This has the effect of 
establishing a low threshold right from the start so that the SSD calculation can be 
terminated earlier resulting in fewer calculations.  
 

5.2 Programming and Procedural Considerations 
 
The current version of the DMWA includes a large data buffer that holds information 
(radiance, brightness temperature, cloud mask, etc) from adjacent line segments (also 
called swaths). Such a buffer makes it possible for the algorithm to track features that 
move out of the domain of the middle line segment, which is the only part of the buffer 
being processed for targets. With each new line segment read in, data in the buffer is 
shifted upwards so that the “oldest” data is always at the top of the buffer while the new 
segment data is added to the bottom of the buffer. This involves a substantial amount of 
copying from one segment of the buffer to another. It is anticipated that future versions of 
the algorithm will not have this buffer, as it is expected that the processing framework 
provided by the AIT will take care of this task. This will greatly simplify the algorithm 
and should significantly improve its performance. 
 
The current version of the algorithm is also limited to processing three images of equal 
size. These limitations will need to be addressed in future versions. In addition to adding 
flexibility to the algorithm, having the ability to process images of varying size (mixing 
and matching) will improve the timeliness of the product. 
 
As required by the AIT, a common variable type declaration statement has been used 
while writing the AMV algorithm.   
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5.3 Quality Assessment and Diagnostics 
 
The following information should be monitored/trended for diagnosing the quality of the 
derived motion wind product:  
 
Number of total targets attempted 
Number of good winds generated 
Percent of winds retrieved with specified QA flag values 
Mean, Min, Max and StdDev of derived wind speed 
Percent of retrievals with a QA flag value for specified atmospheric layers 
Mean, Min, Max, and StdDev cloud height for specified atmospheric layers 
 

5.4 Exception Handling 
 
Exception handling is required for the development of robust and efficient numerical 
software. Requirements set forth by the AIT also stress the importance of exception 
handling. The main modules of the DMW program (target_selection.f90 and 
feature_tracking_utils.f90) use AIT-provided subroutine for error messaging.  
 
For the most part, the DMWA assumes that all necessary image, forecast and ancillary 
data are available through the processing framework. The only data that the algorithm 
explicitly checks for is the temporal brightness temperature data, which is necessary for 
the tracking portion of the algorithm. If the temporal data is unavailable, the algorithm 
outputs an error message and control is returned to the processing framework. 
 
As part of the target selection process, the DMWA checks for missing or unrealistic 
values within both the target and search regions. These values are specified in Section 
3.4.2.1.1 (see Channel Validity Test). If either condition is met, the algorithm will flag 
the scene as bad and proceed to the next adjacent scene. 
 

5.5 Algorithm Validation 
 
Validation of the DMW products requires collocated measurements of reference (“truth”) 
atmospheric wind values for the full range of ABI observing geometry and environmental 
conditions. From these collocated measurements, comparison metrics can be calculated 
that characterize the agreement between the satellite-derived DMWs and the reference 
values. 
 
During the pre-launch phase of the GOES-R program, the product validation activities 
are aimed at characterizing the performance and uncertainties of the DMW products 
resulting from parameterizations and algorithmic implementation artifacts. During this 
phase, there is total reliance on the use of GOES-R ABI proxy and simulated datasets as 
described in Section 4.1. Post-launch validation will apply lessons learned to inter-
comparisons of actual DMW products generated from real ABI measurements and 
reference (“ground-truth”) wind observations. Validation methodologies and tools 
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developed and tested during the pre-launch phase will be automated and applied. More 
specific details on DMW product validation activities can be found in the Product 
Validation Document for the DMW product. 
 
 

6 ASSUMPTIONS AND LIMITATIONS 
 
The following sections describe the limitations and assumptions used in the current 
version of the DMWA. 

6.1 Algorithm Performance 
 
The following assumptions have been made in developing and estimating the 
performance of the DMWA.  
ABI pixel level channel data (for each line segment) from all three images in the 
sequence are available along with accompanying meta-data (latitude, longitude, solar and 
local zenith angles, image scan times, quality flags). It is further assumed that the 
processing framework will handle any preprocessing needed to account for channel 
imagery whose resolutions may differ  
Forecast temperature and wind profiles, surface skin temperature, and surface pressure 
are available and made available to the DMWA through the processing framework 
The pixel level  ABI cloud mask, cloud-top pressure, cloud-top temperature, estimated 
cloud height retrieval error, and cloud height quality flag(s) corresponding to each image 
in the image sequence are available through the processing framework  
DMWA  products are validated with reliable ground-based wind measurements and/or 
winds from a NWP model forecast/analysis 
Proxy datasets and simulated ABI radiance fields from NWP models provide a suitable 
surrogate for estimating the DMWA performance/verification 
 

6.2 Sensor Performance 
 
It is assumed the GOES-R ABI sensor will meet its specifications as documented in the 
ABI PORD (417-R-ABIPORD-0017).    
 

6.3  Pre-Planned Product Improvements 
 
While development of the baseline DMWA continues, we expect to focus on the 
following issues. 

6.3.1 Improve the Link between Pixels Dominating the Feature 
Tracking Solution and Target Height Assignment 
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Target height assignment has been identified as a major source of error for the DMW 
products. Deriving a representative height that is consistent with, and has ties to, the 
features being tracked is the goal of an upgraded wind derivation process. Studying and 
improving the link between the features being tracked and the heights assigned to these 
features is the major focus of this future effort. 

6.3.2 Quality Control Indicators 
 
The quality control indicators attached to each DMW vector are important to the users of 
these products. Proper interpretation and application of these quality control indicators 
helps the user community make optimal use of the DMW products. As such, improving 
these quality control indicators so that they more accurately represent the integrity and 
accuracy of the DMW product is vital. Of particular interest by the NWP community is a 
quality indicator that provides information about the estimated accuracy of the height 
assignment associated with the derived motion wind products. This will be an area of 
future study. 
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Appendix 1: Common Ancillary Data Sets 
 
1. LAND_MASK_NASA_1KM 

a. Data description 

Description: Global 1km land/water used for MODIS collection 5 
Filename: lw_geo_2001001_v03m.nc 
Origin: Created by SSEC/CIMSS based on NASA MODIS collection 5 
Size: 890 MB. 
Static/Dynamic: Static  
 

b. Interpolation description 

The closest point is used for each satellite pixel: 
 
Given ancillary grid of large size than satellite grid 
In Latitude / Longitude space, use the ancillary data closest to the satellite pixel. 
 
2. SFC_TYPE_AVHRR_1KM 

a. Data description 

 Description: Surface type mask based on AVHRR at 1km resolution 
 Filename:  gl-latlong-1km-landcover.nc 
Origin: University of Maryland  
Size: 890 MB 
Static/Dynamic: Static 
 

b. Interpolation description 

The closest point is used for each satellite pixel: 
 
Given ancillary grid of large size than satellite grid 
In Latitude / Longitude space, use the ancillary data closest to the satellite pixel. 
 
3. NWP_GFS 

a. Data description 

 Description: NCEP GFS model data in grib format – 1 x 1 degree (360x181), 26 
levels  
 Filename: gfs.tHHz.pgrbfhh 
Where, 
HH – Forecast time in hour: 00, 06, 12, 18 
hh – Previous hours used to make forecast: 00, 03, 06, 09  
Origin: NCEP  
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Size: 26MB 
Static/Dynamic: Dynamic 
 

b. Interpolation description 

There are three interpolations are installed: 
 
NWP  forecast interpolation from different forecast time: 
 
Load two NWP grib files which are for two different forecast time and interpolate to the 
satellite time using linear interpolation with time difference. 
 
Suppose: 
 
 T1, T2 are NWP forecast time, T is satellite observation time, and 
 T1 < T < T2. Y is any NWP field. Then field Y at satellite observation time T is: 
 
Y(T) = Y(T1) * W(T1) + Y(T2) * W(T2) 
 
Where W is weight and 
   
W(T1) = 1 – (T-T1) / (T2-T1) 
W(T2) = (T-T1) / (T2-T1) 
 
 
NWP forecast spatial interpolation from NWP forecast grid points. This 
interpolation generates the NWP forecast for the satellite pixel from the NWP 
forecast grid dataset.   
 
The closest point is used for each satellite pixel: 
 
1) Given NWP forecast grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the satellite pixel. 

 
 
NWP forecast profile vertical interpolation 
 
Interpolate NWP GFS profile from 26 pressure levels to 101 pressure levels 
 
For vertical profile interpolation, linear interpolation with Log pressure is used: 
 
Suppose: 
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y is temperature or water vapor at 26 levels, and y101 is temperature or water vapor at 
101 levels. p is any pressure level between p(i) and p(i-1), with p(i-1) < p <p(i). y(i) and 
y(i-1) are y at pressure level p(i) and p(i-1). Then y101 at pressure p level is:  
 
y101(p) = y(i-1) + log( p[i] / p[i-1] ) * ( y[i] – y[i-1] ) / log ( p[i] / p[i-1] ) 
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