air-LUSI is a NASA ESTO AITT Demonstration Program

2 year project to measure the lunar irradiance at high altitude with low uncertainties over the Vis-NIR spectral range

- 3 deployments planned
- 1 Engineering Flight and two Demonstration Flights

It is all about the uncertainties

What uncertainties constitute a successful demonstration?

- AITT Proposal: we are trying for 0.5 % uncertainties
- <u>Tom Stone, USGS</u>: A lunar irradiance model with 0.5 % to 1.5 % absolute uncertainties relative to the SI makes the Moon a viable (affordable) on-orbit source for
 - 1. Transfer to Orbit Effects
 - 2. Ensuring consistency between the calibrations not only of overlapping but also nonoverlapping sensors (to help minimize gap effects)
 - 3. Possibly/potentially as an absolute SI traceable on-orbit calibration source
- GSICS/CEOS-IVOS Lunar Calibration Workshop, December 2014.
 - A Workshop objective was to provide the international community with a validated and traceable version of the ROLO Model GSICS Implementation of the ROLO model (GIRO). One of the goals was getting absolute uncertainties under ~ 1 %.

At the end of the Program, we would be satisfied to have a sub-1 % lunar irradiance data set that we have confidence in.

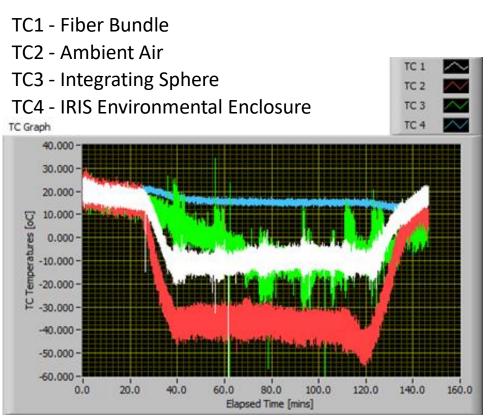
Engineering Flights

Expectations were to Integrate air-LUSI into the ER-2 and Demonstrate functionality of sub-systems in-flight

NASA: Return the pilot and the aircraft safely to the ground

Key Elements for Low Uncertainty

- Create a laboratory environment inside the IRIS box
- Radiometric Stability of the Telescope
 - Spectrograph stability
- Characterization and calibration of both IRIS and the Reference Spectrograph
- Field calibrations
 - In the laboratory at Armstrong pre- and post- integration into the aircraft
 - In the hanger pre- and post flight
- MLI blanketing, heaters and thermostats to control temperature
- In situ monitors
 - LED stability source
 - Thermocouples
 - Pressure sensor

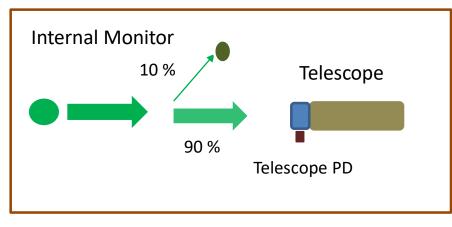

Heaters with thermostats to control temperature Thermocouples to monitor and control temperature

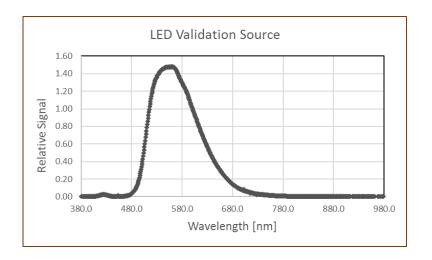
Environmental Enclosure (blue) and the Ambient Air (in the aft-body) (red) Seemed to work

TC3, green, on the integrating sphere, had come loose, so we can explain that temperature measurement.

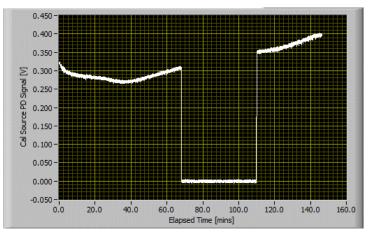
Measurements from TC1, the fiber bundle (white) are problematic; the control set point was +20 °C ±10 °C.

Pressure in the box was stable

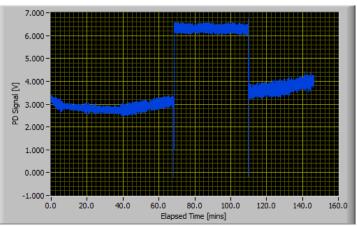

Thermocouples did not have a reference. We now have the proper reference.



PI: Kevin R Turpie, UMBC/JCET

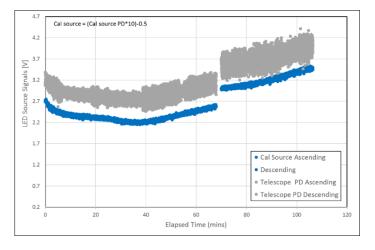


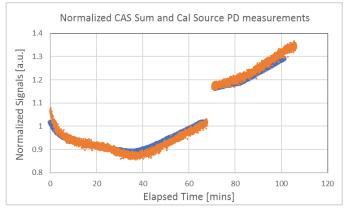
In-situ LED monitoring

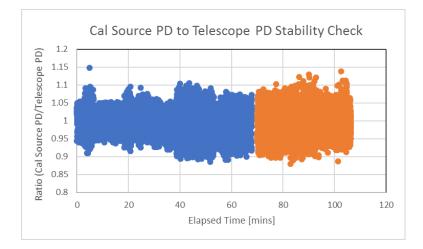


LED PD

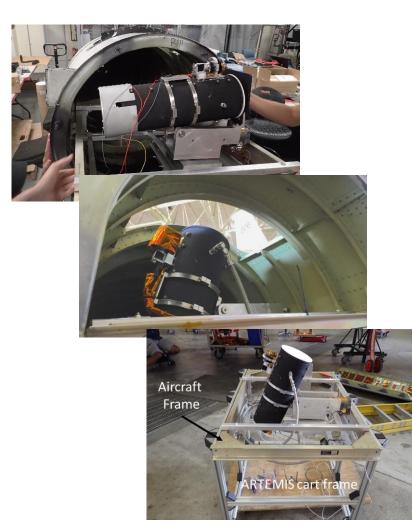
Telescope PD






PI: Kevin R Turpie, UMBC/JCET

In-situ LED monitoring


Increased LED output to improved Telescope PD S/N

Pre- and post-flight calibrations in the hanger

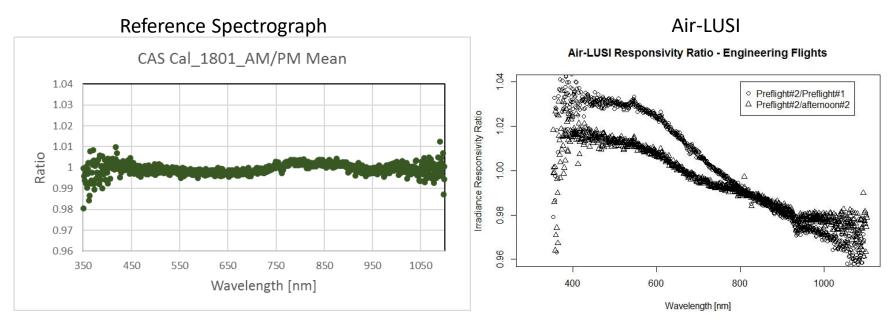
we would take the telescope out of the aft-body and put it on the ARTEMIS cart

PI: Kevin R Turpie, UMBC/JCET

In-situ Calibration

Protocol: Calibrate the system pre- and post-flight.
We ended up with 3 in-situ calibrations

pre-EF1, post-EF1 (afternoon), pre-EF2 (evening)
Nothing was moved between post-EF1 and pre-EF2 calibrations


We did not do a post-EF2 calibration

Post deployment calibration back at NIST

Calibration Issue: Comparing the two Aug 1 calibrations The setup was not changed; this is a repeatability test.

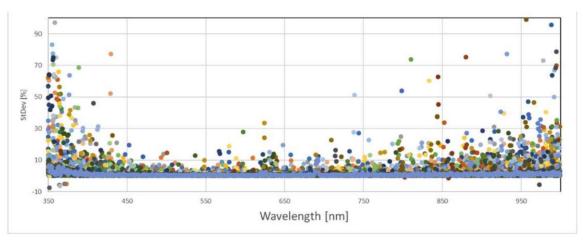
The Reference Spectrograph repeated well;

Telescope repeatability ± 2 %; attributed to alignment or temperature or both

Alignment testing has been done at NIST

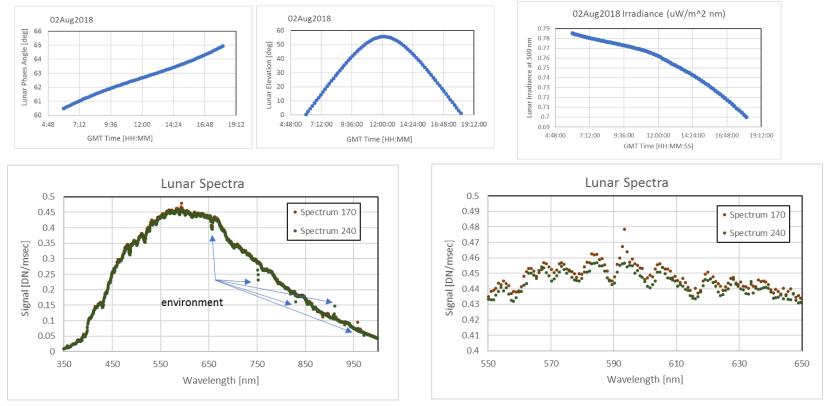
Thermal testing is underway; should finish in a week two.

Post-deployment calibration at NIST was used to determine the Lunar Irradiance



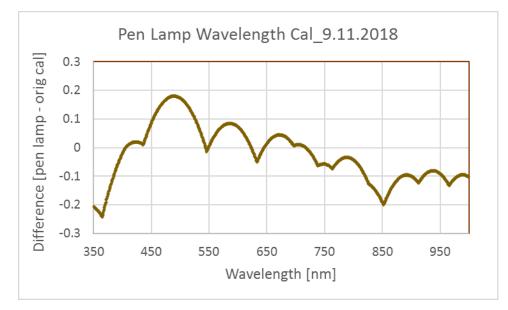
airborne Lunar Spectral Irradiance (air-LUSI) mission

PI: Kevin R Turpie, UMBC/JCET



On-orbit Measurements of the Moon: EF#2 Signal-to-Noise

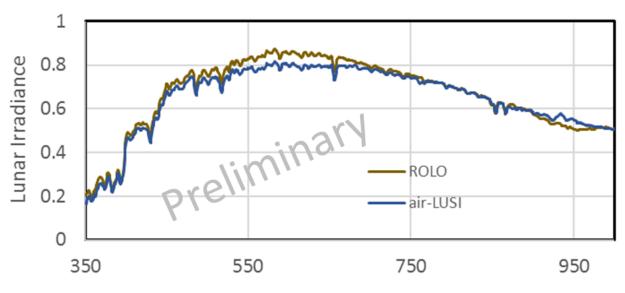
Lunar Irradiance changes slightly during flight


Measurements have the precision needed to see those changes

Observed small spectral errors in our measurements of Fraunhofer lines

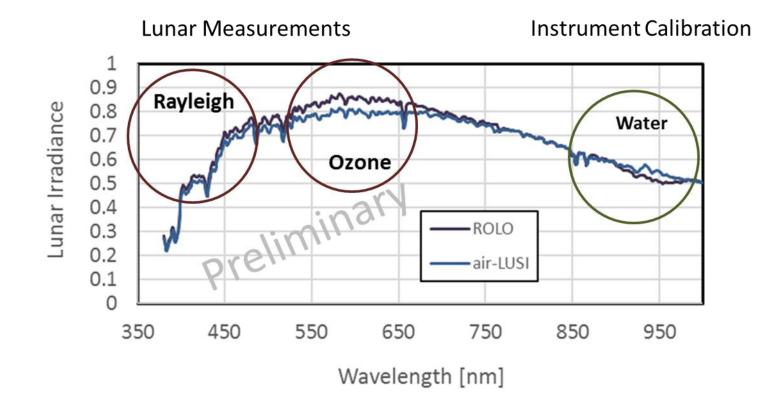
Told us a wavelength calibration needed

Still to do:

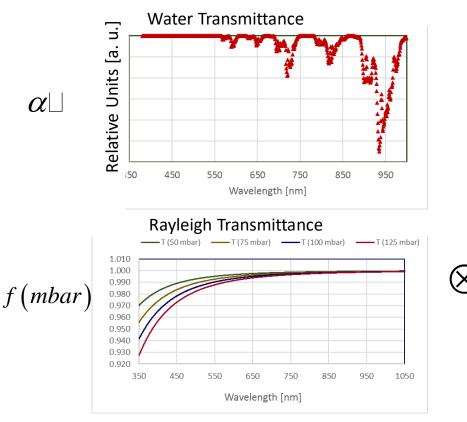

Improved Wavelength Calibration using SIRCUS Wavelength Calibration of the Reference Spectrograph Quick Comparison between air-LUSI Measurements and the spectral distribution of the ROLO Model

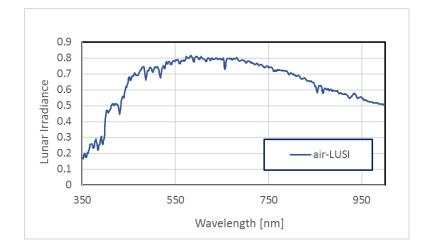
Engineering Flight #2 Lunar Irradiance

Quick-look comparison between the air-LUSI-measured and the ROLO Model-predicted lunar irradiances (provided by Tom Stone)



Wavelength [nm]


ROLO data provided by Tom Stone


Correcting air-LUSI responsivity for Water Absorption in the Calibration and Atmospheric Scattering in the Lunar measurements

Ozone absorption Grant and a second second

 β

Scaling was done empirically to minimize differences between Measurement and Model.

Air-LUSI corrections significantly reduced the differences between Measurement and Model. The Science Team needs vet this ad hoc approach - and improve on it – before results are publicized.

Looking at the Uncertainty Budget

0.20/		
0.3%	0.3%	0.3%
0.2%	0.2%	0.2%
0.1%	0.4%	0.2%
0.2%	0.4%	0.2%
0.2%	0.2%	0.2%
0.2%	0.4%	0.4%
0.2%	1%	1%
0.1%	(10%)	0.3%
0.55%	10%	1.2%
	0.1% 0.2% 0.2% 0.2% 0.2% 0.2% 0.1%	0.1% 0.4% 0.2% 0.4% 0.2% 0.2% 0.2% 0.4% 0.2% 0.4% 0.1% 1%

Let me replace Repro

Reproducibility of the calibrations

with the

Stability of the spectrograph

Demonstration Flights Hoping for April 2019, May is still viable

If we miss those windows, the next opportunity is in August

