

The EUMETSAT Satellite Applications Facility on Land Surface Analysis Continuous Development of Remote Sensing

Products

Isabel Trigo

Outline

- The EUMETSAT LSA SAF
 - Current Products and Services
 - Applications
 - Training & Outreach
- Land Surface Temperature
 - Algorithm
 - Validation
 - On-going work

> NEXT

EUMETSAT Application Ground Segment

Objectives

Objectives of the SAF Network:

- Improve EUMETSAT's Member
 States exploitation of satellite data
- Encourage the utilisation of existing skills and infrastructure in Member States and Cooperating States
- Cost-effective exploitation: Services are distributed in the most appropriate way
- Foster development of cooperation with non-Member States and other organisations

LSA SAF

EUMETSAT Satellite Applications Facility on Land Surface Analysis

- Part of EUMETSAT Ground Segment
- Aims to develop algorithms that allow an effective use of MSG and Metop data related to
 - LAND
 - LAND-ATMOSPHERE Interactions
 - BIOSPHERIC Applications
- Generates, Archives & Distributes Satellite Products in Near Real Time (up to 3h after last obs) and Off-line
- Consortium <u>8 Institutes / 6 countries</u>

- Reviewed (~annually) by technical and scientific panels

Trigo et al., 2011 in Int. J. Remote Sens., DOI: 10.1080/01431161003743199

Meteosat Second Generation

- Geostationary orbit
- Nominal sub-satellite point at 0° long

Instruments

Spinning Enhanced Visible and Infrared Imager - SEVIRI

Geostationary Earth Radiation Budget - GERB

- visible-infrared radiometer for Earth radiation budget studies
- 2 broad-band channels (0.32 4 μm and 0.32 30 $\mu m)$
- sub-satellite point at ~45 km; temporal sampling - 15 min

SEVIRI - Spinning Enhanced Visible and Infrared Imager

11 Channels:	Channel 1 VIS	0.6 µm
3 km sampling distance at sub-	Channel 2 VIS	0.8
satellite point	Channel 3 NIR	1.6
15 minutes	Channel 4 MIR	3.9
	Channel 5 WV	6.2
	Channel 6 WV	7.3
	Channel 7 IR	8.7
	Channel 8 IR/O ₃	9.7
High Resolution VIS channel:	Channel 9 TIR	10.8
1km sampling distance at sub-	Channel 10 TIR	12.0
satellite point	Channel 11 IR/CO ₂	13.4
15 minutes	Channel 12	HRV

Meteosat First Generation

- Geostationary orbit
- CURRENT: Nominal sub-satellite point at 57° E

0° images available since 1982

(CDRs: Albedo and LST)

3 Channels:

5 km sampling distance at nadir 30 minutes

Channel VIS	$0.45-1.0\;\mu m$
Channel WV	5.7 – 7.1
Channel TIR	~ 11.0 µm

Meteosat-7

Metop (Polar-Orbit) – Playload:

- AVHRR MHS GOME-2
- HIRS IASI GRAS
- AMSU-A ASCAT

AVHRR

- 1 km at sub-satellite point
- \geq 2 observations / day

Channel 1	$0.58 - 0.68 \ \mu m$
Channel 2	$0.725 - 1.0 \ \mu m$
Channel 3	~ 1.6 (day) / ~3.8 µm (night)
Channel 4	11.3 – 11.3 μm
Channel 5	11.5 – 12.50 μm

IASI

http://www.eumetsat.int

Meteosat Second Generation

- Geostationary orbit
- Nominal sub-satellite point at 0° long

Main focus of LSA SAF until present

Spinning Enhanced Visible and Infrared Imager - SEVIRI

- explore 96 observations /day (every 15 min) ...
- 12 channels ...
- at 3 km at nadir

LSA SAF – Family of Products

MSG & Metop platforms

LSA SAF Products

All products have a <u>quality flag and/or error bar</u> field associated All products have an ATBD, a Product User Manual and a Validation Report

Full MSG disk

- Europe
- Northern Africa
- Southern Africa
- Southern America

SEVIRI Spatial resolution

Generation Frequency

- 15 min
- 30 min
- Daily
- 10-daily

SEVIRI 15 min clear sky obs within VIS & NIR channels \Rightarrow characterise the sfc BRDF:

$$R(\theta_{in}, \theta_{out}, \varphi) = k_0 + k_1 f_1(\theta_{in}, \theta_{out}, \varphi) + k_2 f_2(\theta_{in}, \theta_{out}, \varphi)$$

Anisotropic surface

- Spatial Resolution:
 SEVIRI original resolution
 3 km at nadir
- Temporal Resolution: Daily & 10-daily
- Area Coverage: SEVIRI disk
- Error bars
- Available since: 2005

Developer: LSA SAF / Meteo-France

Geiger et al. (2008) in *IEEE Trans Geosc Remote Sens*, DOI:10.1109/TGRS.2008.2001798 Carrer et al. (2010) in *IEEE Trans Geosc Remote Sens*, DOI: 10.1109/TGRS.2009.2034530.

- Fraction of Vegetation Cover (FVC)
- Lead Area Index (LAI)
- Fraction of Absorbed Photosyinthetically Active Radiation (FAPAR)
 - ✓ Daily and 10-daily products
 - ✓ 3 km at sub-satellite point
 - ✓ NRT (EUMETCast)
 - ✓ Off-line

Developer: LSA SAF / University of Valencia Verger et al. (2009) in *Remote Sens Environ.*, DOI:10.1016/j.rse.2009.06.009 Martínez et al. (2013) in *Int J App Earth Obs Geoinf*, DOI: 10.1016/j.jag.2012.06.010

Vegetation Parameters

SEVIRI

Phenology parameters

High number of observations leads to relatively **smooth time-series –** good for Phenology

Start of the Growing Season

2007

Kenya – Drought 2009

20090927

MetOp 10-day NDVI from AVHRR/Metop

Example of a Global S10-composite derived from METOP-AVHRR, with zoom on two regions: the Nile delta and Sri Lanka

Developer: LSA SAF / VITO

Land Surface Temperature

Developer: LSA SAF / IPMA

Trigo et al. (2008) in *J. Geophys. Res.*, DOI:10.1029/2008JD010035 Freitas et al. (2010) in *IEEE Trans Geosc Remote Sens*, DOI: 10.1109/TGRS.2009.2027697.

Downward Short-wave (solar) radiation at the surface

- ✓ 30-min and daily products
- ✓ 3 km at sub-satellite point
- ✓ NRT (EUMETCast)
- ✓ Off-line

Developer: LSA SAF / Meteo-France Geiger et al. (2008) *in Meteorol. Appl.,* DOI: 10.1002/met.84 Carrer et al. (2012) in *J. Hydrometeor.*, DOI: 10.1175/JHM-D-11-059.1.

Downward Longwave-wave radiation at the surface

- ✓ 30-min and daily products
- ✓ 3 km at sub-satellite point
- ✓ NRT (EUMETCast)
- ✓ Off-line

Developer: LSA SAF / IPMA Trigo et al. (2011) *in J. Geophys. Res.,* DOI:10.1029/2010JD013888 Carrer et al. (2012) in *J. Hydrometeor.*, DOI: 10.1175/JHM-D-11-059.1.

Evapotranspiration

Based on Sfc Energy Balance with Radiation products and VEGA from LSA SAF

- \checkmark 30-min and daily products
- ✓ NRT (EUMETCast)

- ✓ 3 km at sub-satellite point
- ✓ Off-line

Developer: LSA SAF / RMIB

Ghilain et al. (2011) *in* Hydrol. Earth Syst. Sci., DOI: 10.5194/hess-15-771-2011 Ghilain et al. (2012) *in* Hydrol. Earth Syst. Sci, DOI: 10.5194/hess-16-2567-2012.

Fire Products

✓ Detects pixels containing active fires every 15 min

Estimates Fire Radiative Power (FRP)

FRP=120.1 FRP=107.6 FRP=176.6

FRP ∞ Combustion rate ∞ Smoke release

 \rightarrow CO₂eq emissions

Developer: LSA SAF / King's College London, University of Lisbon Freeborn et al. (2009) *in Remote Sens. Environ.*, DOI: 10.1016/j.rse.2009.03.013 Amraoui et al. (2010) in *Remote Sens. Environ.*, doi:10.1016/j.rse.2009.12.019.

Observed LandSAF Fire Radiative Power [W/m2] ** & Modelled BC+OM Optical Depth [-]

Thanks to J. Kaiser, ECMWF

MODIS 26 August, 0935 UTC

Fires over Russia July – August 2011

5000 2000

5000 2000

1000

500 200

100

50 20

10 5

2 1

0.5

0.2 0.1

0.05

0.02

0.01

0.005

2.0

0.8

0.4

0.2

0.1

MACC Daily Fire Products Monday 26 July 2010 Average of Observed Fire Radiative Power Areal Density [mW/m2]

max value = 0.10 W/m2

August

Successive 24h forecasts initialized using MODIS aerosol data

Thanks to A. Simmons, ECMWF STAR, 9 Jun 2014

Outreach & Training

Regular Workshops

- ✓ LSA SAF team presents work on product development & validation
- ✓ Users are invited to report on applications and ...
- ✓ to discuss product/service requirements

Training

- ✓ e-learning modules
 - http://www.eumetrain.org/data/3/36/index.htm (Vegetation)
- Courses (in cooperation with EUMETSAT)
 - (At least) 1 course / year for African Users (in English, French, or Portuguese)
 - Remote Courses in cooperation with EUMETrain

Outline

- ➢ The EUMETSAT LSA SAF
 - Current Products and Services
 - Applications
 - Training & Outreach
- Land Surface Temperature
 - Algorithm
 - Validation
 - On-going work

> NEXT

LST/GEO Algorithm at the LSA SAF

- Maximize the use of available channels, in order to ...
- Minimize the incertainty of the retrievals, and ...
- being Computacionally Efficient.

Split-Windows – Semi-empirical method based on the simplification of the radiative transfer equation:

$$L_{i} = B(T_{bi}) = \varepsilon_{i} B_{i}(T_{sfc}) \tau_{i} + L_{atm,i}^{\uparrow} + (1 - \varepsilon_{i}) L_{atm,i}^{\downarrow} \tau_{i}$$

TOA obs Sfc

- ✓ 2 adjacent channels, *i*, within the atmospheric window
- ✓ + Taylor expantion of the Planck function, B(T)

Generalised Split-Window \rightarrow 10.8µm and 12.0µm (Wan & Dozier, 1996) Trained using CLEAR SKY synthetic SEVIRI/MSG data

$$T_{s} = (A_{1} + A_{2} \frac{1 - \varepsilon}{\varepsilon} + A_{3} \frac{\Delta \varepsilon}{\varepsilon^{2}}) \frac{T_{10.8} + T_{12.0}}{2} + (B_{1} + B_{2} \frac{1 - \varepsilon}{\varepsilon} + B_{3} \frac{\Delta \varepsilon}{\varepsilon^{2}}) \frac{T_{10.8} - T_{12.0}}{2} + C$$

GSW parameters depend on:

- total column water vapour (ECMWF forecasts)
- viewing angle

Channel Emissivity → Fraction Vegetation Cover

LST from SEVIRI/Meteosat

Emissivty

Pixel MSG

Emissivty – Vega/Ground

Band Emissivity for VEGETATION / SOIL classes

Trigo et al. (2008) in IEEE Trans Geosc Remote Sens., Doi: 10.1109/TGRS.2007.905197

Emissivty

Trigo et al. (2008) in IEEE Trans Geosc Remote Sens, Doi: 10.1109/TGRS.2007.905197

Emissivty

Under Testing: Kalman Filter approach to exploit the high temporal sampling Channels 8.7, 10.8 and 12.0µm \Rightarrow Emissivity & LST

Marsiello et al. (2013) in Atmos. Meas. Tech, DOI: 10.5194/amt-6-3613-2013

Generalised Split-Window \rightarrow 10.8µm and 12.0µm (Wan & Dozier, 1996) Trained using CLEAR SKY synthetic SEVIRI/MSG data

$$T_{s} = (A_{1} + A_{2} \frac{1 - \varepsilon}{\varepsilon} + A_{3} \frac{\Delta \varepsilon}{\varepsilon^{2}}) \frac{T_{108} + T_{120}}{2} + (B_{1} + B_{2} \frac{1 - \varepsilon}{\varepsilon} + B_{3} \frac{\Delta \varepsilon}{\varepsilon^{2}}) \frac{T_{108} - T_{120}}{2} + C$$

GSW parameters depend on:

- total column water vapour (ECMWF forecasts)
- viewing angle

Channel Emissivity → Fraction Vegetation Cover

Operational LST Product

SEVIRI/MSG – LST: Product Uncertainty

Generalised Split-Window

- Trained using CLEAR SKY TOA Tb's MODTRAN
- Verified against independent dataset (~ 15 700 profiles).

Algorithm uncertainty estimated through comparison with Verification dataset.

Emissivity uncertainty

Facilitie

Facilitie

Freitas et al. (2010) in IEEE Trans Geosc Remote Sens, DOI: 10.1109/TGRS.2009.2027697.

20131113 12UTC: LST Errorbar (°C)

- 15 minutes
- Geostationary Projection (3 km sub-satellite)
- HDF5 format; NRT & Off-line distribution
- Standardized set of documentation (ATBD, VR, PUM) NOAA / STAR, 9 Jun 2014

LSA SAF – Product Validation

GENERAL APPROACH

- Validation: Information on products compliance with user requirements
- Intercomparison with other satellite derived similar products

✓ MODIS

✓ AATSR

✓ CERES

✓ ...

- Comparison with Ground Observations
 - LSA SAF/ KIT sites (Southern Portugal; Namibia; Senegal)
 - Established Networks (e.g., BSRN, Fluxnet)
 - Field Campaigns (e.g., AMMA)
- Comparison with Model fields

LSA SAF – Product Validation

LST

- Intercomparison with other satellite derived similar products
 - Consistency Analysis
- Validation against ground observations Portugal (Évora), Namibia (Gobabeb, Kalahari), Senegal (Dahra)
 - As an Indenpendent Reference

LST

LST

- ✓ 3 AREAS 10° x 10°
- ✓ 6 weeks
- ✓ July 2005 to May 2006

LST

MODIS Zenith Angle:

- < 0 view from East
- > 0 view from West

Morning MODIS passage:

MODIS Zenith Angle

Trigo et al. (2008) in *J. Geophys. Res.*, DOI:10.1029/2008JD010035

LST

MODIS Zenith Angle:

< 0 view from East

> 0 view from West

Evening MODIS passage:

MODIS Zenith Angle

Trigo et al. (2008) in *J. Geophys. Res.*, DOI:10.1029/2008JD010035

Land Surface Temperature – Validation

Land Surface Temperature – Validation

T_{sup} MSG/SEVIRI (Land-SAF) versus in situ T_{sup}

In Situ Observations

LST - permanent site with ground measurements in Southern Portugal

In Situ Observations

LST - Evora

Intercomparison LEO - SEVIRI

Directional Effects on LST

Idealized single tree view at Évora: Nadir & SEVIRI view at different local times in July

Geometric Model – estimate shapes of objects seen by the sensor

Boolean model – derive overlap probabilities and the actual fraction of each end-member

Different Viewing Angles ↓

Different LST

Intercomparison LEO - SEVIRI

LST versus in situ T_{sfc}

(C)

60

50

40

30

20

10

0

-10⊾ -10

LST (°C)

Without Geometric Correction

10

0

	Day	Night
MODSW (MOD11)	-5.0/3.1	-0.6/1.2
MODTES (MOD21)	-2.5/1.4	
SEVIRI	-1.2/2.2	-0.1/1.2

With Geometric Correction

	Day	Night	
MODSW (MOD11)	-2.7/1.9	-0.7/1.2	(Bias/StDev)
MODTES (MOD21)	-0.8/1.3		
SEVIRI	0.5/1.4	0.1/1.2	

Ermida et al (2014) in *Remote Sens Environ*, DOI: 10.1016/j.rse.2014.03.016

Direction effects at Évora

Towards a GEO LST

Copernicus – Global Land (NRT)

- LST products are estimated independently for each sensor (pixel-by-pixel; hourly)
- Re-projected to a common (regular 0.05°) grid
- Overlapping areas: LST corresponds to an average of retrieved products; same applies to observation time

Merging LST – Existing Products

Copernicus – Global Land (NRT)

From 2010 onwards

Outline

- ➢ The EUMETSAT LSA SAF
 - Current Products and Services
 - Applications
 - Training & Outreach
- Land Surface Temperature
 - Algorithm
 - Validation
 - On-going work

LSA SAF Chronogram

Near Future (CDOP-2)

- Service Continuity
- Reprocessing Activities (LST, AL, VEGA, FIRE)
- Meteosat First Generation (LST)
- Preparation for new sensors:
 - SLSTR/ Sentinel-3

Preparation for CDOP-3 (2017-2022)

- Next Generation of EUM Satellites
 - Meteosat Third Generation (MTG)
 - EUM Polar System Second Generation (EPS-SG)

Meteosat Third Generation

Playload will be distributed by 2 satellites

MTG-I (launch foreseen for 2018)

Flexible Combined Imager (FCI)

Evolution of SEVIRI – based LSA SAF Products

16 channels (1km / 2 km; high-resolution 0.5 km)

10 min

Lightning Imager (LI)

Lightning detection (total - cloud-cloud & cloud-ground)

MTG-S (launch foreseen for 2020 - TBC)

Infrared Sounder (IRS)

800 channels LWIR+ 920 channels MWIR – full disk; 4 km 60 min

Ultraviolet, Visible and Near-Infrared Sounding (Sentinel-4)

UV: 305 – 400 nm; VIS: 400 – 500 nm; NIR: 755 – 775 nm Europe; 60 min

http://landsaf.ipma.pt