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Basic Recognitions on Ocean Numerical Modeling:

Ocean motions are described by the governing equation 
set of the ocean dynamic system (with four subsystems).

Only the mixing terms are uncertain in the ocean motion    
equations and the flux ones in the boundary conditions. 

Parameter tuning is the opposite of the dynamic (analytic) 
estimate of ocean mixing and boundary flux.

Over-parameterization leads to misuse and confidence 
lose in ocean numerical modeling. 



In 90s of last century we presented a sea wave-induced 
mixing coefficient based on the Prandtl mixing length theory 

The coefficient is completely determined 
without any tunable parameter.
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Characteristics of the mixing coefficient: 

1. The coefficient has exponential distribution vertically and two          

maximums in north and south high latitudes;

2. The effective value of the coefficient               can reach depth more 

than 300 m in the two high latitudes and the surface value is about 

1000 times larger than that.    
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Combining with 

the third generation wave model (MASNUM…)
and substituting the mixing coefficient calculated into 

the ocean circulation model (such as POM… )
and the climate model (such as NCAR-CCSM3…) 

we get the model system used and called as
the coupled ocean circulation model
and the coupled climate model 

without any additional tunable coefficient 

These models have successful applications to the simulation

in regional seas, global ocean and global climate.
All the applications are positive.



• The model domain is
30 S _ 150N,  990 E _ 1160 E, 

• Horizontal resolution
1/180×1/180 (6Km)

• 51 vertical sigma layers 

Model topography

1. The simulation in the offshore area of Malaysia

I) Simulation in Regional Seas
using the coupled ocean circulation model



Modeled (left) and observed (right) SST in summer (JJA)

Modeled (left) and observed (right) SST in winter (DJF)

1) The comparison of the modeled SST to the observed one



Modeled (left) and observed (right) SSH in summer (JJA)  (units: cm).

Modeled (left) and observed (right) SSH in winter (DJF)  (units: cm).

2) The comparison of the modeled SSH to the observed one



3) The comparison of the modeled temperature section
to the observed one
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4) The comparison of the modeled temperature profiles
to the observed ones
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4) The comparison of the modeled temperature profile
to the observed one
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• The model domain is 
220N – 410N, 1170E – 1320E,

• Horizontal resolution 
1/180×1/180 (6Km)

• 25 vertical sigma layers 

2. The simulation in the yellow sea
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Observed 

Modeled by POM model only

The temperature 
along the section 350N

Not good in the upper and 
deep layers 
as well as the transition one. 



Observed 

Modeled by POM + WAVE model
with tide 

Good improvement in 
the upper and deep layers 
as well as the transition one. 



II) Simulation in Global Ocean
using the coupled ocean circulation model

350N

350S



Pacific                     Atlantic                 Indian         Pacific          Atlantic

Modeled by 
POM only

Modeled by 
POM + Wave 
Model

Levitus Data

in August (summer) in February (winter)

1. The comparison of the modeled temperature to the  
Levitus Data along the sections of 350N and 350S 

Thick and uniform upper layer and strong transition are modeled.



Good improvement 
in global modeling

But no improvement 
in low latitudes

The correlation coefficient of the modeled temperature
to the Levitus Data is raised

from 0.58 to 0.76 for POM 
from 0.62 to 0.79 for ROMS in upper 100m layer. 

2. The improvement shown with correlation coefficient

0.58 0.76

- - - POM only
----- POM coupled with waves

M
eridional distribution



Deviation of the SST modeled by POM without sea wave-induced 
mixing from the COADS climatology

Deviation of the SST modeled by POM with sea wave-induced 
mixing from the COADS climatology

3. The comparison of the SST modeled 
to the COADS climatology 



Depth of mixing layer of 
the South Pacific in Feb. 

Levitus Data

POM Model only

POM + Wave Model

Depth of mixing layer of
the North Atlantic in Aug.

4. The comparison of the depth of mixing layer modeled 
to the Levitus Data 



III) Simulation in Global Climate
using the coupled climate model

Modeling in recent 
1000 years



1. The improvement in the tropical bias
indicated by the 270C isotherm

NCAR-CCSM3 +
Sea Wave Model

NCAR-CCSM3
Model only

Observation

too forward cold tongue 
in the East Pacific

opposite SST slope      
in the Atlantic



2. The improvement in the SST time evolution
in the equator area of the Eastern Pacific

(averaged in 1100-900W, 50S-50N area)
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2. The improvement in the time scale
of inter-annual variation
(averaged in 1100-900W, 50S-50N area)
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(T.J. Zhou,2002)

The modeled by
FGCM
+ Sea Wave Model

The modeled by
FGCM model                        

The data analysis  
by T.J. Zhou, 2002 

3. The improvement in the meridional wind speed
along the equator



The modeled by FGCM
Model only

The observation

The modeled by FGCM
+ Sea Wave Model 

4. The improvement in the moisture transport



Xie-Arkin data 
(1979-2003)

Modeled by FGCM     
model only

Modeled by FGCM 
+ Sea Wave model Zonal averaged

5. The improvement in the precipitation
in Asia-Australia Monsoon area



Although we got good simulation results, we still 
need to answer the questions that

what the ocean mixing is,
How to estimate analytically

the mixing induced by sea waves.



Contents

I. Ocean dynamic system 
and its governing equation set

II. The analytic estimate 
of the sea (internal) wave-generated 

turbulence mixing

III. The analytic estimate
of the sea wave (and internal one) mixing

IV. The analytic estimate
of the ocean eddy mixing



I. Ocean dynamic system
and its governing equation set



Wunsch C. and R. Ferrari, 2004: Vertical mixing, energy, and the general          
circulation of the oceans, Annu. Rev. Fluid Mech., 36:281-314. 
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In fact, Wunsch presented the conception of ocean dynamic 
system for ocean mixing study in 2004, which includes four sub-
systems of sea waves + turbulence, internal waves, meso-scale 
eddies and general ocean circulation.  

The Wunsch’ ocean 
dynamic system and 
the mixing effects of 
Sea waves + turbulence,
Internal waves,
Meso-scale eddies and
Ocean circulation.
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The quasi-dispersion relation shows the distribution of time- and 
space-scales of the ocean motions.  

Quasi-dispersion relation

1. The quasi-dispersion relation
and the ocean dynamic system 
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2. The four sub-system of the ocean dynamic system

According to the quasi-dispersion relation the ocean dynamic 
system can be divided in to four sub-systems.



Wunsch C. and R. Ferrari, 2004: Vertical mixing, energy, and the general          
circulation of the oceans, Annu. Rev. Fluid Mech., 36:281-314. 

3. The partition is consistent 
with the Wunsch ‘s consideration
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In order to get the governing equation set for  
the ocean dynamic system we define a three-fold  
Reynolds average treatment:

The first fold Reynolds average

on the motion set of ocean turbulence
The second fold Reynolds average

on the motion set of sea and internal waves
The third fold Reynolds average

on the motion set of ocean eddies

SS
X

SM
X

MM
X



I) The governing equations 

of the ocean perturbation motions



1. The governing equations of ocean turbulence
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1) The motion equations

2) The boundary conditions 。。。。。。。
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2. The governing equations of sea & internal waves

1) The motion equations

2) The boundary conditions 。。。。。。。
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3. The governing equations of ocean eddies

1) The motion equations

2) The boundary conditions 。。。。。。。



II) The governing equations of the ocean motion  

with scale larger than some one



1. The governing equations of the ocean motion 
with scale larger than sub-small one
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1) The motion equations

2) The boundary conditions 。。。。。。。
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2. The governing equations of the ocean motion 
with scale larger than small & sub-meso one

1) The motion equations

2) The boundary conditions 。。。。。。。



3. The governing equations of the large scale motion

1) The motion equations

2) The boundary conditions 。。。。。。。

 

     / / // /
0

0

/

0

2

1
SS SS MSM SM SM MM

M MSS SM MM
M MM

t

p g 
 




   



          




U U U Ω U

k u u u uuU u

0 U

       / /
0

/ // /
SSS SS SS SM M

MM MM MM SM SM MM MM

T T TT Q
t

TT  
            

U u uu

       / /
0

/ // /
SS SS SS SM MM

SM SM MM MM MMSM MM

s s s
t

D s ss         
  u uU u

 , ,s T p  turbulence sea & internal waves eddies



the large scale ocean mixing is defined by 
the residues of fluxes produced by molecule, 
turbulence, sea & internal waves and eddies 
based on the motion equations derived.    



II. The analytic estimate of
the sea wave-generated turbulence mixing
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I) The           second order moment closure model 
of ocean turbulence

12 -level
2

1. The         expressions of second order moments2-level
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Second order moment closure model is the basic 
treatment for turbulence mixing, which includes 



2. The         governing equations of 
the characteristic quantities         of turbulence
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1) The motion equations

2) The boundary conditions on sea surface

Two Generating terms 
by velocity shear of 
sea waves mainly 

Two Generating terms 
by sea wave breaking 

Yuan, Y.L., L. Han, et al., 2009: The statistical theory of breaking entrain-
ment depth and surface whitecap coverage of real sea waves, 
J. Phys. Ocean. vol.35, 143-161

3-level
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II) The balanced solution of ocean turbulence 
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1. The definition of balanced solution

∵                                             

Turbulence in upper ocean  

≈ sea wave - generated turbulence

∴

Balanced solution is the basic description of ocean 
turbulence due to its scales are small 
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2. The determination of the balanced solution
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In fact, the balanced solution allows  a relation 

The solution of         was identified by Huang’s data analysis.0 

Huang, C. J. and F. L. Qiao, 2010: Wave-turbulence interaction and its 
induced mixing in the upper ocean, J. Geophys. Res., Vol.115, C04026

so that we have a set of solutions



1) The vertical distribution of theoretic kinetic energy      (         )

3. The comparison of  the balanced theoretic solution        
to the field observation   

3 k



The red dots are the measured data and the blue ones are
the theoretic solution

2) The vertical distribution of theoretic dissipation rate 



4. The theoretic mixing coefficient 
based on the balanced solution
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1) The vertical distribution of the theoretic mixing coefficient  SWTV Theory
B
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2) The comparison of  the theoretic mixing coefficient                                
to the Prandtl’s one
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In the range of large value 2a 
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In the range of small value 2a 
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2) The comparison of  the theoretic mixing coefficient                                
to the Prandtl’s one

 SWTV Theory
B

 PrWV andtl
B



The mixing produced by sea wave-generated turbulence 
looks like large in a small range of          , 

more observations and experiments are needed for 
understanding the turbulence mixing in whole range of 

and the mixing produced by sea waves themselves should  
be studied deeply.  

2 0a  

2a 



III. The analytic estimate
of sea (and internal) wave mixing
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The original definition of the mixing
produced by waves themselves



In order to calculate the mixing produced by waves 
in second order accuracy, we need to develop a wave 
theory without the ir-rotational assumption. 

Yuan, Y.L., L. Han, et al., 2011: The unified linear theory of wavelike pertur-
bations under general ocean conditions, Dyn. Atm. & Ocean., Vol.51, 
55-74
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1) Motion equations
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2) Boundary conditions

1. The governing equations of the motions

I) A unified theory of  wavelike perturbations in general 
ocean conditions

Dynamic balance of gravity in general ocean conditions



2. The analytic solution of the linear theory

1) The expression of the wave motion
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2) The relations of complex frequency to wave-number

(1) The relations of the complex frequency to the wave-number 
on the sea surface
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(2) The vertical invariance of the complex frequency

(3) The expression of the vertical wave-number
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1) The expression of sea wave motions 
by the real part of the solution

1. The wave transport fluxes of density and velocity 
in second order accuracy

II) The derivation of the vertical wave mixing coefficients



2) The expression of the transport fluxes
of density and velocity by sea waves 
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in the derivation of the formulas, the statistical relations of 
homogeneous motion were used     
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3) The expression of vertical transport flux of density
in second order accuracy   
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4) The expression of vertical transport flux of velocity
in second order accuracy
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1) The expression of the vertical transport flux of density 
in first order accuracy 

2. The wave transport fluxes of density and velocity
in first order accuracy

 exp 2GSW I t TGSW
N t


 the times of wave growth

the Richardson number of density

the vertical mixing coefficient for density
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2) The expression of the vertical transport flux of velocity 
in first order accuracy 
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the Richardson number of velocity

the vertical mixing coefficient for velocity               
(momentum)
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3. The comparison of the theoretic mixing coefficients   
to the Prandtl’s one 

1) Comparison in the expression form 

They have same dimension and similar expression with sea 
wave spectrum. 

The former two show the expressions of density and velocity 
respectively. 
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2) Comparison of the theoretic surface value to the Prandtl’s one 

Due to ,
and

so in all the range of we have 2a 
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IV. Conclusion 

1. The ocean mixing is the residues of fluxes which 
are divided into three parts corresponding to  
turbulence-, wave- and eddy-perturbations.

It is not only produced by turbulence in narrow sense 
or in ambiguous sense

It is produced by three kinds of perturbation motions 
respectively.



2. The analytic estimates of sea wave-generated  
turbulence mixing and sea wave mixing have been  
made and are consistent with the Prandtl’s one. 
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Sea-wave mixing

Sea-wave-generated turbulence mixing
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So the theoretic wave-induced mixing includes two parts:
the wave - generated turbulence mixing

and the wave mixing,

and the mixing coefficient of the theoretic sea wave-
induced mixing is consistent with the Prandtl’s one 
quantitatively and qualitatively.                                 
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Comparison of the theoretical results of sea wave-induced mixing

to that derived from the Prandtl mixing length theory 



3. We still have works to do about the analytic estimate,   
specially,  of the internal wave mixing and the ocean 
eddy one.   
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going to work on the mixings produced by
internal wave-generated turbulence

and internal waves themselves

going to work on the mixing produced by
ocean eddies themselves



Thanks !!


