

Monitoring Malaria from Operational Satellites

Felix Kogan NOAA/NESDIS/STAR

COLABORATORS Wei Guo – IMSG Al Powell - STAR Dan Mandl – NASA Alejandro Deeb – World Bank Leny Roytman, Atiqure Rahman, Mahomed Nizamudin – NOAA/CREST Ramesh Dhiman – Malaria Institute, INDIA Guido Van Langenhove – Met Services, NAMIBIA Joerg Szarzynski – UN SPIDER Marco Vargas – STAR

OUTLINE

- Background
- Malaria and Environment
- AVHRR Sensor & Data
- Vegetation Health (VH) System
- Data Applications & Interpretation
- Callenges

Global Burden of Infectious Diseases Caused by Arthropod Vector

Global Burden of Infectious Diseases Caused by Anthropod Vector

Diseases	Disease Burden (% from	Mortality (% from total)
	total)	
Malaria	78	89
African trypanosomiasis	3	3
Lymphatic filariasis	10	0
Dengue fever	1	2
Leishmamiasis	5	5
Chaga disease	1	1
Onchocerciasis	2	0

Based on Disability Adjusted Life Years (DAILY) – the number of healthy years of life lost due to premature death and disability (World Health Organization 2002, The World Health Report, Geneva).

WORLD Malaria Facts

- 107 world countries are affected
- **3.2 billion people** (48% of the world) are at risk
- **300–500 million** annual malaria cases
- **1.5-3 million people die annually** (4-5% of global fatalities)
- Children (C) & Pregnant women (PW) vulnerable (C): One million dies annually; (PW): 10% maternal death

Malaria Geographic Distribution

- **P.** falciparum and **P.** vivax cause of death (one million deaths caused by *P.* falciparum only)
- Area: Africa, Asia, Latin America, the Middle East & part of Europe
- Expenditure: 40% of Africa's health
- Sub-SAHARA Africa contributes: 60% of global, 75% of *P*. *falciparum* & 80% of deaths cases; Every 30 sec a child dies

- CLIMATE & LANDSCAPE determine distribution of mosquito-borne diseases
- WEATHER affects

timing, duration, area and intensity of outbreaks

• WARM & WET surface stimulates mosquito's activities to carrying the disease to people

Correlation between malaria cases & weather data, **TANZANIA**, *Hai District*

MONTH	Rains	Tmax	Tmin
May	0.24	0.45	0.45
Jun	0.38	0.36	0.29
Jul	0.41	0.29	0.30
Aug	0.29		0.42

station network

NDVI = (NIR-VIS)/(NIR+VIS)

NDVI & Reflectance

Cover Type	Ch1	Ch2	NDVI
Vegetation: Dense	.050	.150	0.500
Medium	.080	.110	0.140
Light	.100	.120	0.090
Bare Soil	.269	.283	0.025
Clouds	.227	.228	0.002
Water	.022	.013	-0.26

NDVI= $(Ch2-Ch1)/(Ch2+Ch1)_{8}$

NDVI & Rainfall (% mean), SUDAN (1984-1987)

10

NDVI in Dry & Wet Ecosystems

NDVImax indicates HEALTHY vegetation NDVImin indicates UNHEALTHY vegetation

AVHRR-based VH Indices

Vegetation condition index (VCI), values 0 - 100

VCI=(NDVI-NDVImin)/(NDVImax-NDVImin)

NDVImax, and NDVImin – climatology (1981-2000 maximum and minimum NDVI for a pixel;

Temperature condition index (TCI), values 0 - 100

TCI=(BTmax-BTmin)/(BTmax-BTmin)

NDVImax, and NDVImin – climatology (1981-2000 maximum and minimum NDVI for a pixel

Vegetation Health Index (VHI), values 0 – 100

VHI=a*VCI+(1-a)*TCI

- 0 indicates extreme stress
- 100 indicates favorable conditions

MOISTURE

THERMAL

VEG. HEALTH

Vegetation Health (VH) System

- Satellites: NOAA
- Sensor: AVHRR
- Records: 30-year
- Characterize: LAND SURFACE GEENNESS (Chlorophyll) MOISURE (Vigor) THERMAL (Temperature)
- Assess:

VEGETATION HEALTH CUMULATIVE impact "have memory" from EXTREME STRESS to FAVOURABLE

- Issued
 - WEEKLY 4 km PIXEL ALL LANDSCAPE
- Products: VEGETATION HEALTH, MOISTURE (VCI), THERMAL (TCI) CONDITION

ARTMENT OF CO

pasture production, fire, malaria; http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH

Project Lead: Felix Kogan

Sponsor: NOAA/NESDIS

Strategy: MONITORING RISK AREA AUGUST 26 2008

Malaria risk maps identify <u>priority</u> <u>areas</u> to fight epidemics

Malaria risk maps identify priority areas & additional resource distribution to fight epidemics effectively

Strategy: WEATHER PROXY AUGUST 26, 2008

Malaria risk maps identify priority areas and additional resource needed to fight **epidemics** effectively

VALIDATION: VH & Malaria SENEGAL

Month wise, year wise cases of <u>Plasmodium</u> vivax and <u>P.falciparum</u> recorded in study villages between 1989-2000.

Singh et al., 2004. Trop. Med. Int. HIth

Breeding Sites

Treated Bed Nets Evaluation

(Correlation of Malaria Cases (Annual Malaria Incident (AMI)/Trend of AMI) with Moisture Index (VCI))

VALIDATION: Malaria (%) Observed vs. VH-Simulated Gujarat INDIA

VALIDATION: Malaria observed vs. VH (TCI)-simulated Caprivi NAMIBIA

NO ATMOSAL

NOAB

US DEPARTMENT OF CON

Malaria Cases (%) Choco COLOMBIA

Malaria cases,1982-1997

Correlation: Malaria Cases (%) with VCI & TCI Choco COLOMBIA

VH provides up to 4 months advance malaria warnings
The warnings must be area specific

http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_browse.php

- UN Malaria Envoy
- Roll Back Malaria Partnership
- Global Fund to Fight Aids, TB & Malaria
- Presidential Malaria Initiative
- Melinda & Bill Gates Foundation
- US Congress (2009-2013)

- Indoor Residual **Spraying** (IRS)
- Insecticide Treated Nets (ITN) incl. LLITN
- Artemisinin-based combination therapy (ATC)
- Intermittent preventive **treatment** for pregnant women (IPTp)
- Improving infrastructure and technology

PMI: Goals & Countries

IND ATMOSPHER

June 2005, President G.W. Bush announced a **\$1.2 billion** aid package for AFRICA: Reduce 50% malaria death in 15 countries.

SENEGAL MALI LIBERIA **GHANA BENIN ETHIOPIA KENYA** UGANDA **RWANDA** MALAWI TANZANIA **MOZAMBIOUE** ZAMBIA **ANGOLA** MADAGASCAR

Area – 3,243,000 sq. mi. People – 343,000,000

2003 Malaria PMI Countries ATMOSAL NOAA **Endemic** Area **POPULATION AFFECTED** - Rwanda 1.5 mil. (9% pop.) 151 - Uganda 13.0 mil. (41% pop.) Millions **MALARIA CASES are** R **SPECIFIC to** 10 - Country W a 30 **Affected area** ases **a** n - Population - Weather n Z - Climate Malaria 5d - Malaria Intensity a

VH PROVIDES COMBINE ESTIMATION OF THESE CONDITIONS in ENDEMIC AREAS

VH diagnoses malaria risk over a country & an area advising on cost-effective resource distribution

Ghana

-110

http://www.who.int

n

1

Tanzania

a

Madagascar Mali Mozambique Rowanda Uganda

* VH provides malaria risk area for an entire country
* Pre-season VH forecasts malaria epidemics

•Early detection of environmental conditions conducive for mosquito development & spread of malaria using operational satellites

 Monitoring Malaria Start/End, Area, Intensity & Impacts

Vegetation Health & Dengue Hemorrhadic Fever Cases

NOAA Capabilities (Examples)

KENYA: RVF (Rift Valley Fever) & Vegetation Health (VH)

NOAA has capability to identify & monitor other mosquito-born diseases

Challenges in Monitoring Malaria COLOMBIA

Satellite data are proxy requiring calibration & validation

CHALLENGES in treatment

- Increasing mosquitoes resistance to insecticides
- Parasite resistance (undermine malaria control)
- Changes in mosquitoes behavior due to treatments
- Changes in ecology due to human activities
- Diminishing number of effective insecticides
- No alternatives for DDT and pyrethroids
- Limited evidence of the treatment impact

http://www.star.nesdis.noaa.gov/smcd/emb/ vci/VH/index.php

Thank You