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DMSP SSMI&SSMIS SDS Team 

Mitch Goldberg, Climate data record requirements for SSMI

Fuzhong Weng: Calibration and product algorithm science

Ralph Ferraro: Sampling issues, CDR assessments, algorithm validation,

Banghua Yan: Calibration algorithm

Wanchen Chen: Data recovery, archival and reformat 

Ninghai Sun: Tests and implementation of SSM/I and SSMIS calibration algorithm

Hilawe Semunegus: NCDC SSM/I archival

John Forsythe: CIRA SSM/I data recovery from 1987 to 1992
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Outline
• Scientific Data Stewardship Requirements 

– Fundamental CDR (Level 1B, SDR)
– Thematic CDR 

• SSMI and SSMIS Calibration Issues (Fuzhong Weng)
– Data rescue efforts
– Newly discovered SSM/I calibration problem (calibration targets,

angular dependant biases, beacon contamination)
– SSMIS calibration problems
– Reformat issues with new calibration information 

• SSM/I/S Products Issues (Ralph Ferraro)
– Some thoughts on “Climate” and trends
– Orbit drifts & sampling problems 
– Old data format vs pixel level retrievals
– SSM/I/S value added products 
– Parallel productions with SSM/I operational algorithms
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NOAA Scientific Data Stewardship Program

Sensor Data
Records (SDRs)

Data (Direct & Remotely Sensed)

Fundamental 
Climate Data 

Records (FCDRs)

Thematic Climate 
Data Records
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Data 
Records or 
Homogenized 
Time 
Series

Climate 

Homogenization 
and Calibration

Time-tagged 
Geo-Referenced

Converted to 
Bio-Geophysical 

Variables

Environmental
Data Records

(EDRs)

Climate Data Records

Converted to 
Bio-Geophysical 

Variables

•The program was initiated from NRC 
report and has been approved for 
FY06 fundng
•FCDR and TCDR from SSM/I  and 
SSMIS are identified as one of 
priorities 
•AO will be published in FFO
•John Bates and Mitch Goldberg are 
leaders of the SDS program
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NESDIS SSM/I Climate Data Records 
Began Since 1987
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The SSM/I Time Series

• The most robust 
standing passive 
microwave time series
– 19+ years and growing
– 14+ years dual-satellite
– 10+ years tri-satellite
– Sensor stability
– Full time duty cycle
– 1400+ km swath width

• Seven channels
• 10+ derived products
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SSM/I TDR Data Rescue Status 
(1987~present)
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19 Years of SSM/I TPW

Example:

If 1% TPW uncertainty (~0.35 mm/month) with a trend ~ 0.05 mm/year
(or 0.004 mm/month), is this a trend or just uncertainty in retrieval?
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19 Years of SSM/I Ocean Wind Speed
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This is the case for SSM/I 37 GHz, V-Pol, 
surface wind  > 12 m/s. The sensitivity of wind 
speed to brightness temperature is about 1. – 3 
m/s/K. 

Tropical mean wind speed increases 0.5 m/s per decade. Is the recent increasing hurricane wind 
damage responding to this trend? How can we assure this trend not related to inter-satellite 
calibration and algorithms    
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Trends from NCEP/NCAR Reanalysis 

TPW/Precip

SST
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Traits: Accuracy, Precision and Uncertainty 
(After Stephens)
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True y

a(t 1)

a(
t 2)

p(t1)

p(t2)

y(t1)

y(t2)

Accuracy, Precision, Stability 
(after Stephens)

Accuracy = True y - mean y
Precision = standard deviation of y
Stability = change of accuracy with time
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NOAA Integrated Cal/Val System 
• Characterize the biases between instruments 

through inter-satellite and intra-satellite 
calibration, and  rigorous forward modeling 
(RTM) with NWP model outputs

• Monitor and quantify instrument noise by 
analyzing calibration target and space view 
measurements (on-orbit & prelaunch)

• Monitor instrument performance stability and 
update calibration coefficients through  
vicarious calibration 

• Monitor on-board calibration targets and 
eliminate anomalous signals from stray lights 
and other sources

• Quantify post-launch instrument spectral 
response function (on-orbit spectral)

• Validate against ground, ocean and aircraft 
observations

• Monitor the stability of intrument calibration 
accuracy
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Outline
• Scientific Data Stewardship Requirements

– Fundamental CDR (Level 1B, SDR)
– Thematic CDR 

• SSMI and SSMIS Data Issues (Fuzhong Weng)
– Data rescue efforts
– Newly discovered SSM/I calibration problem (calibration targets,

angular dependant biases, beacon contamination)
– SSMIS calibration problems
– Reformat issues with new calibration information 

• SSM/I/S Products Issues (Ralph Ferraro)
– Some thoughts on “Climate” and trends
– Orbit drifts & sampling problems 
– Old data format vs pixel level retrievals
– SSM/I/S value added products 
– Parallel productions with SSM/I operational algorithms
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Microwave Instrument Calibration 
Components 

Energy sources entering feed for a reflector 
configuration

1. Earth scene Component,
2. Reflector emission
3. Sensor emission viewed through reflector,
4. Sensor reflection viewed through reflector,
5. Spacecraft emission viewed through 

reflector,
6. Spacecraft reflection viewed through 

reflector,
7. Spillover directly from space,
8. Spillover emission from sensor,
9. Spillover reflected off sensor from 

spacecraft,
10. Spillover reflected off sensor from space,
11. Spillover emission from spacecraft
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Linking Together Multiple MW Instruments 
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Digital Counts
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where δR is the post-launch bias caused by factors
other than non-linearity  
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Calibration Issues for MW Imager/Sounder 

(Weng et al, ASIC3, 2006)
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Major Impediments to Microwave Sensor Calibration 

• Difficult to Correct for satellite orbit drift in trend 
analysis  

• Calibration uncertainty from instrument non-
linearity   

• Anomalous emission from unknown targets 
• Warm load instability and solar and stray slight 

contamination 
• Difficult to characterize the radio frequency 

interference in particular wavelengths  
• Pre-launch characterization, antenna patterns, 

brightness temperature standard, and well 
characterized target

(Weng et al, ASIC3, 2006)
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SSM/I and SSMIS Antenna Systems

• Main-reflector conically scans 
the earth scene

• Sub-reflector views cold space 
to provide one of two-point 
calibration measurements  

• Warm loads are directly viewed 
by feedhorn to provide other 
measurements in two-point 
calibration system 

• Warm load calibration is 
contaminated by solar and stray 
lights

• Lunar contamination on space 
view 
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Scan Dependant Biases  

F8F8 F10F10 F11F11

F13F13 F14F14 F15F15
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F13 Scan Dependant Biases 
Ascending node:Ascending node:

Descending node:Descending node:

CH1CH1 CH3CH3 CH4CH4 CH6CH6

CH1CH1 CH3CH3 CH4CH4 CH6CH6

1996
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Cold and Warm Load Trend
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Platinum Resistance Thermometers 
(PRT) Trend 
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F15 SSM/I Radcal Beacon Interference
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F15 SSM/I Radcal Beacon Interference
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Total Precipitable Water (TPW)  from F15 SSM/I 

TPW (beacon signal contaminated) TPW (beacon signal removed)
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Intersatellite Calibration Using the 
Simultaneous Nadir Overpass (SNO) Method
• SNO – every pair of POES satellites

with different altitudes pass their 
orbital intersections within a few 
seconds regularly in the polar 
regions  (predictable w/ SGP4)

• Precise coincidental pixel-by-pixel 
match-up data from radiometers 
provides reliable long-term 
monitoring of instrument 
performance

• The SNO method has been used for 
operational on-orbit longterm
monitoring of AVHRR, HIRS, AMSU 
and for retrospective intersatellite
calibration from 1980 to 2003 to 
support climate studies

• The method is expanded for SSMI 
with the Simultaneous Conical 
Overpass (SCO) method SNOs occur regularly in the +/- 70 to 80 latitude



Inter-satellite Calibration for SSM/I Data  

• Read and extract TDR data array
• Find the intersecting point when two pixels are within 

12.5 km with a stand time difference < 60 degree
• Perform pixel-by-pixel match and image remapping for 

the mid-scan pixels with the same surface features
• Comparison of antenna temperatures with the mean for 

biases and standard deviation
• Produce plots showing time series of biases and 

regression line and mean antenna temperature for each 
SCO



 Orbital Time between successive SCOs (Days) 

 Period (min) F-08 F-10 F-11 F-13 F-14 F-15 

F-08 101.7062       

F-10 100.4645 5.7145      

F-11 101.8109 68.6968 5.2757     

F-13 101.8979 N/A 4.9597 82.8006    

F-14 101.8832 N/A 5.0102 99.5613 491.8503    

F-15 101.8061 N/A N/A 1518.6125 78.5195 93.4356  

F-16 101.8833 40.6325 5.0099 99.4616 494.2989 99291.1703 93.4184 

 

Frequency of Simultaneous Conical 
Overpasses

Note: Orbital periods derived from two-line-elements for December 15, 1999.
except the TLE for F-16 was on Oct. 20, 2003.
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SSM/I SCO Distribution
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F-10 vs. F-13 SSM/I SCO Matching
(37- 85 GHz Channels) 
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F-10 vs. F-13 SSM/I SCO Matching
(19-22 GHz Channels)
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SNO Pairs

We would like to have zero
bias between two satellites,
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SNO Time Series Used for Deriving 
Intersatellite Bias and Nonlinearity

(Zou et al, 2006, JGR)
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SSM/I Algorithms for Non-Linearity
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Two Bytes Retrieval 

Impacts of SSMIS Data Bit Accuracy

Single Byte Retrieval 



40

Major SSM/I Calibration Issues   

• Scan dependent biases: rapid fall-off near end of 
scan within 3 K,

• Sensor to sensor variation in calibration 
information (e.g., RF gain, count range…),

• Some possible trends in calibration targets, 
• Improper on-board averaging of calibration 

information (e.g. PRT averaging), 
• No nonlinearity term in calibration process,
• Known and unknown contamination processes: 

radcal beacon interference (RFI), solar intrusion to 
warm load
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SSMIS Antenna System and Calibration

• Main-reflector conically scans the earth 
scene

• Sub-reflector views cold space to provide 
one of two-point calibration 
measurements  

• Warm loads are directly viewed by 
feedhorn to provide other measurements 
in two-point calibration system 

• The SSMIS  main reflector emits radiation 
from its coating material 

– SiOx VDA (coated vapor-deposited 
aluminum)

– SiOx and Al VDA Mixture
– Graphite Epoxy 

• Warm load calibration is contaminated by 
solar and stray Lights

– Reflection Off of the Canister Top into 
Warm Load

– Direct Illumination of the Warm Load 
Tines

• Lunar contamination on space view 
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SSMIS vs. AMSU-A 
Weighting Functions 

Oxygen Band Channels

SSMIS 13 Channels Sfc – 80 km

AMSU-A   13 Channels Sfc - 40 km

SSMIS Provides Sounding at Higher Altitudes 
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SSMIS Anomaly Distribution 

Shown is the difference between simulated and observed  SSMIS 54.4 GHz. The SSMIS is the first  
conical microwave sounding instrument, precursor of NPOESS CMIS. The calibration of this instrument 
remains unresolved after 2 years of the lunch of DMSP F16. The outstanding anomalies have been 
identified from three processes: 1) antenna emission after satellite out of the earth eclipse which 
contaminates the measurements in ascending node and small part in descending node, 2) solar heating 
to the warm calibration target and 3) solar reflection from canister tip, both of which affect most of 
parts of descending node.    
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FFT Analyses of  Warm Counts 
(54.4 GHz)

Anomalous jumps in warm load counts result from direct solar illumination and stay light to 

calibration. These anomalies can be detected and filtered out through FFT analysis  
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SSMIS Anomalies Correction Algorithms  

1. Antenna is not a pure reflector. It emits 
radiation with a very small emissivity and 
its own temperature. This additional 
radiation is called as an antenna emission 
anomaly 

2. Warm load is heated by intruded solar 
radiation. The energy  received through  
feedhorn does not match with the warm 
load physical temperature measured by the 
platinum résistance thermisters (PRT). 
This is referred as a  warm load anomaly

3. The radiance from space view by the sub-
reflector does not correspond to the sum 
of cosmic background temperature (2.73K) 
and pre-calculated correction values for 
each channel due to antenna side-lobe 
effort.    

1. Use the emissivity from NRL 
antenna model and  the 
temperature measured from the 
thermister mounted on antenna 
arm as approximation  

2. Analyze the time series of warm 
load  counts together with PRT 
and define the anomaly locations 
in terms of the FFT harmonics

3. Analyze the time series of cold 
space view count and define the 
anomaly locations in terms of the 
FFT harmonics and cosmic 
temperature plus antenna 
correction

Anomaly Causes Anomaly Mitigation Process
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SSMIS Antenna Temperature Bias 
February 3, 2006

aTT BA /Δ=Δ

Before anomaly correction After anomaly correction

After removal of antenna emission and solar contamination to warm load. 
Global biases approach constant. Temperature biases from TDR and SDR 
space are related through the slope coeff. for spill-over correction, Tb = 
a*Ta + b
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SSMIS Bias Trending 
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AMSU vs SSMIS Matching through 
Simultaneous Conical Matching 

• SNO – every pair of POES satellites
• with different altitudes make orbital 

intersections within a few seconds 
regularly in the polar regions  
(predictable w/ SGP4)

• Precise coincidental pixel-by-pixel 
match-up data from radiometer pairs 
provide reliable long-term monitoring 
of instrument performance

• The SNO method (Cao et al., 2005) is 
used for on-orbit long-term monitoring 
of imagers and sounders (AVHRR, 
HIRS, AMSU) and for retrospective 
intersatellite calibration from 1980 to 
2003 to support climate studies

• The method has been expanded for 
SSM/I with Simultaneous Conical 
Overpasses (SCO)



50

SSMIS vs. SSM/I Products 

SSMIS-F16

SSM/I-F15

Cloud Liquid Water Total Precipitable Water
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SSMIS vs. SSM/I Products 

Land Surface Temperature Land Surface Emissivity  

SSMIS-F16

SSM/I-F15
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SSMIS Assimilation Trials at ECMWF 

Graeme Kelly

Pre-processed data:

• 40 % flagged
• limited coverage
• tuning ongoing
•T sounding chs only
• 0.5K obs errors

NO SAT
NO SAT + SSMIS

NO SAT + N15 AMSU

SH AC 
500hPa height

NH AC 
500hPa height
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Direct SSMIS Cloudy Radiance Assimilation

The initial temperature field from control 
run (left panels) w/o uses of SSMIS 
rain-affected radiances and test run (right panels) 
using SSMIS rain-affected radiances

DMSP F-16 SSMIS radiances is at the first 
time assimilated using NCEP 3Dvar data 
analysis. The new data assimilation improves 
the analysis of surface minimum pressure 
and temperature fields for Hurricane Katrina. 
Also, Hurricane 48-hour forecast of hurricane 
minimum pressure and maximum wind speed 
was significantly improved from WRF model 

Significance: Direct assimilation of satellite  
radiances under all weather conditions is a 
central task for Joint Center for Satellite Data 
Assimilation (JCSDA) and other NWP centers.  
With the newly released JCSDA Community 
Radiative Transfer Model (CRTM), the JCSDA 
and their partners will be benefited for 
assimilating more satellite radiances in global 
and mesoscale forecasting systems and  can 
improve the severe storm forecasts in the next 
decade  
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Summary

• DMSP SSM/I data scattered in the community from 1987 to 2006 has
been recovered  and archived at NESDIS 

• Critical calibration problems affecting SSM/I CDR generation has been 
identified 

• DMSP SSMIS is becoming a major data source for NWP data 
assimilation and provide vital constellation to NOAA POES operation

• The NESDIS beta-version calibration algorithm has significantly 
eliminated most of SSMIS radiance anomalies (e.g. antenna emission, 
warm load anomaly…)

• Impacts of SSMIS radiances on NCEP analysis field are significantly 
positive.  SSMIS observations are assimilated under all weather 
conditions through JCSDA Community Radiative Transfer Model 
(CRTM) 
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SSMI Product Issues will be the future forum by 
Ralph Ferraro

Stay tuned 
Next few slides are the preview for his talk
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Outline

• Scientific Data Stewardship Requirements
– Fundamental CDR (Level 1B, SDR)
– Thermatic CDR 

• SSMI and SSMIS Data Issues (Fuzhong Weng)
– Data rescue efforts
– Newly discovered SSM/I calibration problem (calibration targets,

angular dependant biases, beacon contamination)
– SSMIS calibration problems
– Reformat issues with new calibration information 

• SSM/I/S Products Issues (Ralph Ferraro)
– Some thoughts on “Climate” and trends
– Orbit drifts & sampling problems 
– Old data format vs pixel level retrievals
– SSM/I/S value added products 
– Parallel productions with SSM/I operational algorithms
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What Defines Climate & Variability?

• Mean state of surface and atmosphere 
(last 30 years)

• Seasonal to interannual variability (and 
its spatial variability)

• Fluctuations in shorter term phenomenon 
(that may “average” in longer term)

• Discernable trend in time series (above 
noise/confidence level)

Easy

Difficult
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Warm SST Phase

Cold SST Phase
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Standard Deviation of Monthly Rainfall at DCA
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Water cycle intensification?
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19 years of SSM/I TPW

Example:

If 1% TPW uncertainty (~0.35 mm/month) with a trend ~ 0.05 mm/year
(or 0.004 mm/month), is this a trend or just uncertainty in retrieval?
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Moving towards TCDR’s…

• Sensor characterization and correction 
remain the highest priority
– Robust and rigorous approaches
– Adjust to common “reference”

• However, this does not solve the “climate”
issue entirely for derived hydrological 
parameters
– Satellite drift & diurnal cycle
– Non-linear processes in retrieval algorithms
– Use/treatment of multiple satellites
– Data sampling
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Satellite Drift

• DMSP satellites can 
drift by over 2 hours 
during its lifespan

• Correcting drift to 
common time is 
desirable
– Caveat: autocorrelation 

of geophysical 
parameter is greater 
than drift

• Affects spatial and 
temporal resolution of 
derived products

TOGA-COARE Oceanic Precipitation

Time vs. space
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Satellite Drift (2)
SSMI TDR's Annual Means - 40 N, 90 W
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•Example: Satellite drift is confirmed at a land location
•19 V and 85 V annual mean values closely follow overpass time changes
•Adjustment to a reference should compensate for drift

•Geophysical products should respond properly
•However, 85 V sensitive to episodic events (e.g., snow cover & rain)

•Impact unknown on geophysical products
Improper calibration and compensation for drift & diurnal 
cycle can cause unreliable time series (and inferred trends)
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Diurnal Cycle

• Adjustment of Tb to 
“reference” cannot 
compensate for missing 
diurnally driven events 

• Impact on time series is 
parameter driven
– Snow and ice cover (low), rain 

and clouds (high) 
– Some remedies include using 

only specific nodes (e.g., snow 
cover), however, regional and 
seasonal variations can be 
quite different (next slide)!

130 am
730 am
1030 am
130 pm
730 pm
1030 pm

AMSU
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Diurnal Cycle (2)
More AMSU examples
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Non-Linear Processes

• A physical relationship:
– L = a0{ln[Ts – TB2] – a1ln[Ts – TB1] – a2} 
– V = b0{ln[Ts – TB2] – b1ln[Ts – TB1] – b2} 

• Averaging methods (pentad, monthly, etc.)
– Generally assume normal distributions; may not be the case

• Decision tree processes
– Individual steps may be linear, entire process is highly non-

linear

Impacts of improper calibration on non-linear 
processes needs to be quantified before TCDR’s
are truly robust
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SSM/I EDR Rain Algorithm
• Bias in TB’s will 

affect the “decision”
in each step:
– SI
– Snow cover
– Desert
– Arid Soil
– Sea-ice

• Ramifications 
unknown but likely 
severe for “climate 
change”
– However, defining 

mean climate and 
seasonal to interannual 
changes are less 
sensitive to such biases
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Use of Multiple Satellites
• Aside from F8, at least 

two SSM/I’s in operation 
since 1991
– Nominal operating times 6 

am/pm; 10 am/pm
• For those parameters 

with largest diurnal 
variability, “sampling 
error” contributes 
largest source of overall 
error
– Can greatly reduce this 

using dual satellites
– However, diurnal cycle and 

orbital drift need to be 
treated properly
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Data Sampling Implications
• Swath vs. Gridded

– Several “legacy” products 
were generated using sub-
sampled and/or gridded
products

• Necessitated  due to 
computer limitations in 1990’s

• For continuity sake, 
procedures have changed 
very little

– e.g., Ferraro/NCDC time 
series, GPCP, EASE grid

– For most accurate climate 
products, swath data need to 
be used

• Impact of using gridded and 
subsampled data needs to be 
carefully considered
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Data Sampling Implications (2)

• Use of gridded TB’s/L2 products can cause misrepresentation of 
derived fields
– Treatment of overlapping orbits

• Average or composite?
– Higher latitudes

• Improved data sampling reduces retrieval errors, but, can cause aliasing affects

Tri-SSMI rain rate gridded composite
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SSM/IS Value Added Products

• Besides “legacy” TCDR’s (rain, snow, TPW, CLW, 
Sea-ice, etc.), there is a host of enhanced products 
that can be produced from SSM/I
– Land surface emissivity
– Land surface temperature
– Soil moisture/wetness
– Improved physical retrieval models for atmospheric and 

surface parameters
• Inclusion of new TCDR’s will be considered as 

part of SDS program.  These will be compared with 
the reprocessed legacy products
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Summary
• Although sensor characterization and 

correction remain the highest priority for 
passive microwave satellite 
measurements, a number of other 
concerns need to be addressed before 
robust FCDR’s can be generated:
– Satellite drift & diurnal cycle
– Non-linear processes in retrieval algorithms
– Use/treatment of multiple satellites
– Data sampling
– Others
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