

NOAA Satellites and Information

National Environmental Satellite, Data, and Information Service

Tropospheric Temperature Trend Derived from MSU when Calibrated using Simultaneous Nadir Overpasses

Cheng-Zhi Zou

NOAA/NESDIS/Center for Satellite Applications and Research

Acknowledgment

Mitch Goldberg Jerry Sullivan Changyong Cao Norman Grody Bob lacovazzi Dan Tarpley

Zhaohui Cheng Mei Gao

Contents

- Background
- Simultaneous nadir overpass matchups
- Inter-calibration using SNOs
- Trend results
- On-going work and future plans

I. Background

NOAA MSU Satellites

- Each satellite has a life cycle of a few years
- Each satellite overlaps
 With other satellites
- LECT gradually changes With time orbital drift phenomenon

Merging these satellites is a non-trivial task

Satellite Local Equator Crossing Time (LECT) vs time

•Global change includes surface and atmospheric components

 Surface trend is more reliable due to higher density of observational network

- Radiosondes are sparse for atmosphere observations and subject to regional and temporal errors due to differences in observational practices
- MSU observations to the rescue

MSU weighting functions for Channel 2, 3, 4, combined 2&4, 2&3 (Courtesy of Mitch Goldberg)

Surface station temperature time series (Hansen et al. 2001)

Past MSU CH 2 Trend Studies

Spencer and C	Christy (1992)	: 0.02 K Dec ⁻¹	, 1979-1988
---------------	----------------	----------------------------	-------------

- Christy et al. (2003): 0.02 K Dec⁻¹, 1979-2002
- Prabhakara et al. (2000): 0.13 K Dec⁻¹, 1980-1999
- Mears et al. (2003, 2005): 0.10 K Dec⁻¹, 1979-2001
- Vinnikov and Grody (2003): 0.22-0.26 K Dec⁻¹, 1979-2002
- Grody et al. (2004) 0.17 K Dec⁻¹, 1979-2002
- Vinnikov et al. (2006): 0.20 K Dec⁻¹, 1978-2004

Fake Trend Problem--Bias

A bias of 0.1 K is sufficient to lead to different conclusion

Fake Trend Problem--Bias

5-day and global-ocean-averaged time series for NOAA 10,11,12, and 14 obtained from NESDIS operational calibration algorithm

Fake Trend Problem —Warm Target contamination T_{w} Warm target temperature $T_{b}=T_{b}(T_{w}, T_{r})$ Weighted temperature from surface and atmosphere Time series of warm target for NOAA10, 11,12, and 14 (ocean averages) 290 $\frac{dT_{b}}{dt} = \frac{\partial T_{b}}{\partial T_{w}} \frac{\partial T_{w}}{\partial t} + \frac{\partial T_{b}}{\partial T_{r}} \frac{\partial T_{r}}{\partial t}$ ٠ 285

Require

$$\frac{\partial T_b}{\partial T_w} = 0$$

Fake Trend Problem —Diurnal Cycle Effect

• Ascending plus descending reduce the effect

•Effect is small over oceans 0.01 K /decade (Mears et al.)

II. SNO Error Characteristics

SNO Definition

Method to find SNO matchups:

- Use Cao's (2004) method to find the orbits that have intersections
- Use time and location information in the 1B file to determine simultaneity between two pixels

Schematic viewing the overpasses between two NOAA satellites

SNO Locations

SNO Temperature range for CH. 2: 200-250 K Global temperature range for CH. 2: 200-260 K

MSU Scan Pattern

MSU Scan Pattern and footprint sizes

SNO Bias Characteristics

•T_b difference gets larger when the SNO pixel distance gets larger

•SNO numbers increase with the distance

 Different satellite pairs have different SNO numbers because of different overlap period

NOAA 9 and NOAA 10

NOAA 10 and NOAA 11

STD and biases of channel 2 brightness temperature differences between satellite pairs versus center distance of the nadir overpass pixels. (a) Biases (b) STD . Linear calibration algorithm at level 0 is used.

SNO numbers vs center distance of nadir pixels for all satellite pairs

 $N_m = \left(\frac{z_{\eta/2} \, \sigma}{\Omega}\right)^2$

 $z_{\eta/2}$ =1.96 for 95% confidence level σ = standard deviation Ω =0.1 K, tolerance or error bar in the bias statistics

III. Calibration Method

MSU In-Orbit Calibration Process

MSU Sensor

Warm Target Temperature is measured by PRT

Conceptual diagram of MSU observational procedure

Level 0 Calibration Equation

Radiance (R)

Linear Calibration

$$R_L = R_c + S(C_e - C_c)$$

 $S \longrightarrow Slope$

Nonlinear Calibration (Mo 1995)

$$R = R_L - \delta R + \mu Z$$

$$Z = S^{2} (C_{e} - C_{c})(C_{e} - C_{w})$$

Digital Counts (C)

SNO Radiance Error Model

$$R_{k} = R_{L,k} - \delta R_{k} + \mu_{k} Z_{k}$$
$$R_{j} = R_{L,j} - \delta R_{j} + \mu_{j} Z_{j}$$
$$\bigcup$$

Radiance Error Model for SNO Matchup K and J :

$$\Delta R = \Delta R_L - \Delta \delta R + \mu_k Z_k - \mu_j Z_j$$

$$Z_j = \beta Z_k + \alpha$$

SNO Radiance Error Model

Final Regression Equation:

$$\Delta R_L = a_0 - a_1 Z_k$$

$$a_1 \approx \mu_j - \mu_k$$

$$a_0 \approx \delta R_k - \delta R_i$$

• Since absolute values of μ cannot be obtained reliably from SNO, one of the two satellites must be chosen as a reference satellite. Here NOAA 10 is chosen as a reference satellite and its pre-launch calibration values is temporally used for calibration.

•Final μ will be determined by requiring the contamination by the warm target temperature to be zero.

SNO Nonlinear Calibration— Bias Removal

Linear Calibration

Nonlinear calibration using SNO

Scatter plots showing effects of the nonlinear calibration on the error statistics and distribution of the brightness temperature differences between NOAA 10 and NOAA 11.

SNO Sequential Calibration Procedure

- Assuming NOAA 10 as the reference satellite and using its pre-launch coefficient for reference
- Obtain calibrated radiance (1b) for NOAA 10
- Compute NOAA 11 coefficients from regressions of N11-N10 SNO
- Obtain calibrated radiance (1b) for NOAA11
- Repeat above procedure for NOAA 12 with calibrated NOAA 11 as references

Effect on time series

IV. Trend Results

Trend With Simple Bias Removal

 Small inter-satellite biases still exist Solution: simply subtract biases to obtain merged time series.

Reference satellite problem

Trend is determined by μ : $R = R_L - \delta R + \mu Z$

Solution: $a_1 \approx \mu_j - \mu_k$

 Selection of different reference satellite is equivalent to conducting sensitivity experiments for the μ parameter of a single reference satellite

Warm Target Contamination

Brown Line: T_b differences between NOAA 10 and 11 Blue Line: T_w of NOAA 10 Pink Line: T_w of NOAA 11

Fixing Reference Satellite Problem by Removing T_w Contamination

- µ_{N10} small or large, large warm target temperature contamination
- When µ_{N10} is 25% larger than its pre-launch value, averaged warm target temperature contamination reaches a minimum (4%)
- Corresponding trend is 0.198 ± 0.02 K Dec⁻¹
- Degree of freedom about 30, correlation is significant at 95% when r²>13%

Explaining T_w Contamination Removal

$$R = R_L - \delta R + \mu Z$$

$$\downarrow$$

$$\overline{R'T'_w} = \overline{R'_L T'_w} + \mu \overline{Z'T'_w}$$

If
$$\mu = -\frac{R_L'T_w}{Z'T_w}$$

Then
$$R'T_w = 0$$

Overlapping Satellites <i>j k</i>	T _B (j-k) vs <i>Tw</i> (j) Linear	T _B (j-k) vs Tw (j)				
U		$U_{_{NI0}}\!\!=\!\!0$	U _{N10} =5	U _{N10} =6.25	U _{N10} =10	U _{N10} =12.5
	-0.59	-0.59	-0.09	0.08	0.51	0.69
N10 N11						
N11 N12	-0.82	-0.73	-0.48	-0.34	0.14	0.37
N12 N14	-0.88	-0.86	-0.33	0.00	0.72	0.87

T_b Difference When T_w Contamination Removed

Summary on SNO Calibration

- SNO to accurately determine the calibration coefficient differences between satellites
 - → results in ZERO inter-satellite biases for SNO
 - →removes temperature-dependent nonuniformity in biases

 → Greatly reduce inter-satellite biases for gridded dataset (0.05 to 0.1 K for SNO calibration, 0.5 to 0.7 K for NESDIS operational algorithm)

Remove warm target contamination to determine absolute values of calibration coefficients and trend

→Post-launch coefficients larger than Pre-launch values

Satellite Pairs k j	a_0	<i>a</i> ₁
N11 N10	-2.925	-3.177
N12 N11	2.572	2.254
N14 N12	-1.282	-1.393

Dots: Pre-launch values Line: SNO calibration values.

Final anomaly trend

V. On-going work and plans

Spatial Distribution of Biases

- Ocean OK
- Land needs diurnal cycle corrections

Extends to Different Channels

 MSU Channel 3 bias-distance relationship weaker

 SNO nonlinear calibration also removes biases

 Working on combined Ch 2 and 3 trends

After SNO Calibration

Connect MSU with AMSU

- AMSU biases found
- AMSU has different frequency and resolutions

Time series of SNO biases for Ch. 5 between NOAA 15 and 16 (Courtesy of C. Cao)

Impact on Reanalysis

- Assimilate Merged MSU 1b to NASA MERRA Reanalysis (Modern Era Retrospective-analysis for research and Application) system – Emily Liu
- Impact on all reanalysis variables
- Possibly resolve diurnal cycle problem

Compare With Other Observations

- Radiosonde
- GPS Radio Occultation

Conclusion

- A SNO calibration procedure is developed and a unique set of calibration coefficient is found
- The coefficients remove warm target contamination and biases
- MSU channel 2 ocean trend after bias and warm target contamination removal is 0.20 K Dec⁻¹
- Global tropospheric trend will be available when diurnal cycle and stratospheric cooling effects are removed

