HIRS Inter-satellite Bias from the Simultaneous Nadir Overpass Observations

Likun Wang, PSGS Changyong Cao, NOAA/NESDIS/STAR Pubu Ciren, PSGS

HIRS Instrument

- 12 longwave (6.5-15 μm) 7 shortwave (3.7-4.6
 - μ m)
 - 1 visible (0.69 µm)
- Onboard calibration for IR channels
 - Space View
 - o Blackbody View

HIRS Historic Dataset

Inter-satellite Bias

- Type 1 Related to instrument itself (HIRS instruments are not exactly identical)
 - SRF difference
 - Instrument degradation
 - Change of calibration algorithm

Type 2 – Different observation time

- Diurnal variation of HIRS observations
- Orbit drift of satellite
- Climate analysis: Both are important Data assimilations: Type 1
- The inter-satellite bias from the SNO observations can only resolve Type 1 inter-satellite bias

Simultaneous Nadir Overpass (SNO)

- Polar orbiting satellites intersect each other at high latitudes.
- When the SNO occurs, the radiometers from both satellites view the Earth and the atmosphere at the same place and same time but from different altitudes.
- It greatly reduces the comparison uncertainties related to satellite observational time and viewing geometries

Example of SNO events - HIRS ch2 between NOAA12 and NOAA14

Observational time difference: < 40 seconds

SNO detected BT range

Cover the lower to upper-mid range of the HIRS measured brightness temperature but miss the upper range for some channels.

All the SNO data on website

🖆 🔸 🛶 👻 🥥 🏠 📰 🚕 📄 http://www.orbit.nesdis.noaa.gov/smcd/spb/calibration/icvs/hirs_historic/

🔻 🕨 🛛 W• Wikipedia (English)

_ 8 ×

📄 NOAA/NESDIS/ORA Satellite... 🞑

HIRS Inter-Satellite Bias from SNO observations (1978-2003)

		07 (200	Devel 00			heth Delle							
HIRS		1077N08	Band 02	Temperatur	e blas for	both Pole	Intersecti	ons	-		-	~~~~	
NOAA06_07		YEAR	JDAY	Lat	1on	T_DITT	STDEV	Samples	T_NU/(K)	STDEV	T_NU8 (K)	STDEV	
Select a Channel:		83	123.181	79.602	102.781	0.328	0.352	18	230.918	0.146	230.590	0.317	
CH1 - Show		83	123.216	-79.375	-89.336	0.019	0.402	10	206.504	0.154	206.484	0.469	
·		83	123.287	-79.320	-115.133	0.384	0.3/1	12	206.923	0.317	206.539	0.428	
NOAA07 08		83	133.803	79.547	-121.711	0.486	0.215	1/	231.793	0.146	231.306	0.1//	
NOAA07_00		83	133.839	-79.398	46.727	0.248	0.347	19	202.370	0.264	202.122	0.240	
Select a Channel:		83	133.874	79.703	-145.742	-0.020	0.206	10	230.825	0.171	230.845	0.185	
CH2 Show		83	133.909	-79.312	20.734	0.440	0.255		201.654	0.178	201.215	0.155	
		83	144.532	-79.242	156.047	0.606	0.375	18	199.363	0.424	198.757	0.441	
NOAA08_09		83	155.119	79.672	125.820	0.390	0.293	16	236.369	0.208	235.979	0.219	
Select a Channel:		83	155.154	-79.312	-67.484	-0.436	0.301	14	198.252	0.226	198.688	0.188	
CH1 Show		83	165.777	-/9.453	69.625	0.008	0.347	19	196.909	0.373	196.901	0.435	
		83	165.812	79.664	-123.602	0.528	0.141	1/	238.176	0.232	237.648	0.209	
NOAA00 10		83	176 200	-79.367	43.625	0.5/4	0.331	19	195.579	0.325	195.005	0.369	
NOAAU9_10		0.3	176.399	-/9.289	-10.267	-0.348	0.335	18	194.85/	0.362	195.205	0.231	
Select a Channel:		83	176.435	79.004	170 414	0.4/1	0.232	19	237.069	0.1/9	236.598	0.162	
CH1 Show		0.3	107 000	-19.221	10.414	-0.64/	0.399	15	100 675	0.2/2	100 542	0.440	
		0.3	107.022	-79.406	-10.00/	0.132	0.362	20	190.075	0.243	190.545	0.301	
NOAA10_11		83	107.007	79.586	147.641	0.418	0.228	10	237.755	0.175	237.337	0.197	
Select a Channel:		0.0	107 715	-79.332	-44.072	0.055	0.203	10	192.079	0.164	192.024	0.170	
CH1 - Show		0.3	197.715	-79.390	101 211	-0.329	0.390	19	194.490	0.404	194.027	0.319	
		0.0	200 272	79.040	25 445	0.200	0.350	17	235.670	0.100	233.403	0.294	
NOAA11 12		0.5	200.372	79.727	115 202	0.204	0.133	10	104 594	0.001	233.333	0.139	
NOAATT_12		0.3	229.002	-79.500	70 702	0.310	0.342	19	124.004	0.313	222 061	0.420	
Select a Channel:		0.3	229.000	-79 523	-109 521	-0.062	0.102	17	196 006	0.112	196 074	0.175	
CHI - Show		0.5	240.275	-79.525	-100.331	-0.000	0.313	20	220 672	0.235	220 426	0.330	
		0.5	250.010	-79.429	1 267	0.230	0.327	15	225.072	0.137	225.450	0.247	
NOAA12_14		0.3	251 003	79 820	169 562	0.072	0.415	15	228 986	0.310	203.320	0.003	
Select a Channel:		83	272 177	79.020	106 828	-0.046	0.243	20	219 082	0.240	219 128	0.240	
CH1 - Show		83	272 212	-79 352	-87 281	0.040	0.272	17	204 048	0.240	203 842	0.295	
		83	282 870	79 711	-143 273	0.200	0.263	14	218 366	0 284	218 055	0.208	
NOAA14 15		83	282 905	-79 359	23 461	0.505	0.263		212 273	0 180	211 768	0 185	
Soloct a Channel:		83	293 527	-79 547	161 031	0.533	0 191	8	225 651	0 230	225 118	0 291	
		83	293.598	-79.492	135.219	0.543	0.427	16	226.341	0.405	225.798	0.686	
		83	304.114	79.875	130.211	0.348	0.148	5	210.091	0.228	209.743	0.204	
		83	304.149	-79.438	-63.852	0.504	0.207	12	221.848	0.134	221.343	0.154	
NOAA15_16		83	304.185	79.812	104.281	-0.024	0.308	20	209.646	0.234	209.670	0.242	
Select a Channel:		83	304.220	-79.586	-87,930	0.169	0.247	15	222,403	0.239	222.234	0.257	
CH 18 - Show		83	325.464	-79.453	-177.031	0.257	0.263	17	240.615	0.166	240.358	0.270	
		83	336,121	79.648	125.656	0.390	0.272	15	201.866	0.267	201.476	0.273	
NOAA16 17		83	336.157	-79.414	-66.594	0.036	0.229	19	241.581	0.169	241.545	0.191	
Select a Channel		83	346.779	-79.383	69.188	0.290	0.234	12	241.087	0.145	240.797	0.166	
CH1 Show		83	346.814	79.875	-121.633	0.645	0.379	17	210.657	0.480	210.012	0.503	
		83	346.850	-79.516	45.008	0.351	0.218	20	241.081	0.147	240.730	0.183	
	_	84	13.751	79.789	-99.477	0.130	0.226	6	207.731	0.350	207.601	0.418	
Updated on		84	13.786	-79.578	68,492	0.076	0.256	18	240.131	0.194	240.055	0.116	
06/14/07													

http://www.orbit.nesdis.noaa.gov/smcd/spb/calibration/icvs/hirs_historic/

HIRS Inter-satellite Bias for Ch2 (70hPa Temperature)

Scene-Temperature Dependent Bias

SRF difference

■ Arctic Summer ■ Arctic Winter ■ NCEP Profile at 80N ■ SNO Bias

Inter-satellite Bias for Ch12 (Upper Troposphere Humidity)

Inter-satellite bias for ch12

■ Actic Summer ■ Actic Winter ■ NCEP Profile at 80N ■ SNO Bias

1550

1500

1400

1450

wavenumber (cm⁻¹)

Inter-satellite Bias for Ch8 (Window channel; ISSCP reference)

Conclusion

- HIRS inter-satellite bias have been analyzed using SNO observations for all HIRS instruments from 1980-2005. All the data are on-line now.
- We demonstrate the inter-satellite bias for channels 2, 8 and 12.
- We also found that the bias can not be totally explained by the difference of the HIRS SRFs. Other factors may also be involved.
- We are now investigating the root-causes for the HIRS inter-satellite bias channels by channels. We will focus on developing a algorithm to account for the inter-satellite biases in the future.

Inter-satellite Bias for ch8

■ Actic Summer ■ Actic Winter ■ NCEP Profile at 80N ■ SNO Bias

Inter-satellite bias for ch12

How does scene homogeneity effects on results?

Two phases of this study

- Phase 1: Focus on the Inter-satellite biases between HIRS
 - Completed
- Phase 2: Develop a algorithm to account for the inter-satellite biases.
 Orking on

Example of results: channel 2

Inter-satellite Bias for ch8

■ Actic Summer ■ Actic Winter ■ NCEP Profile at 80N ■ SNO Bias

