

Passive Microwave Radiometric Calibration: Design and Hardware Issues

Dave Walker

Electromagnetics Division NIST Boulder, Colorado

NOAA-NIST Mtg on Calibration for Climate-Quality Time Series, 14 Jan 08

- NIST researchers: Jim Randa, Amanda Cox, Rob Billinger, George Free, Katie MacReynolds, Jeff Guerreri, Ron Whitmann
- MSU-specific issues difficult to quantify due to lack of design/test information, so this talk is generic for passive microwave radiometers (MSU-like instruments)

- ASIC³ summary emphasizes need for stds.
- SI Traceability (BIPM, 1998; CGPM, 1995)
- No national standards exist for $\mu W T_B$ at NIST or any other NMI (China close, though)
 - $\quad \mbox{``traceability'' usually established thru calibrated} \\ PRT's in a non-ambient \mbox{μW$ calibration target} \\$
 - ... in contrast to Vis/IR
 - NIST Physics Lab (& other institutions)

• Microwave remote sensing, ideal case:

- Calibration
 - linear radiometers ⇒ need (≥) two standards for calibration
 - need independent cal of targets, comparison to other radiometers, traceability
- Develop (& transfer) a standard for microwave brightness temperature
- Still in early stages, but some progress made

- Two approaches to brightness-temperature standard:
 - Standard radiometer
 - Standard target

• We have worked on both approaches.

• Radiometer measures $T_{A,out}$; want to determine T_B (assume far field conditions)

• Break up $T_{A,in}$:

$$\overline{T_T} = \frac{\int_{\text{target}} T_B(\theta, \phi) F_n(\theta, \phi) d\Omega}{\int_{\text{target}} F_n(\theta, \phi) d\Omega}$$

$$\overline{T_{BG}} = \frac{\int T_B(\theta, \phi) F_n(\theta, \phi) d\Omega}{\int F_n(\theta, \phi) d\Omega}$$

$$\eta_{AT} \equiv \frac{\int F_n(\theta, \phi) d\Omega}{\Omega_p}$$

$$T_{A,in} = \eta_{AT} T_T + (1 - \eta_{AT}) T_{BG}$$

$$T_{A,out} = \alpha \eta_{AT} \overline{T}_T + \alpha (1 - \eta_{AT}) \overline{T}_{BG} + (1 - \alpha) T_a$$

- Control the background, $\overline{T}_{BG} = T_a$
- Then $\overline{T_T} = T_a + \frac{1}{\alpha \eta_{AT}} \left(T_{A,out} - T_a \right)$
- So we need $\alpha \approx 1/L$ and η_{AT}

$$\eta_{AT} \equiv \frac{\int F_n(\theta, \phi) d\Omega}{\Omega_p}$$

٠

- Environment
 - not thermal-vac

- must control
$$\overline{T_{SL}} = \frac{\int T_B(\theta, \phi) F_n(\theta, \phi) d\Omega}{\int \int F_n(\theta, \phi) d\Omega}$$

- Do so by controlling/knowing T_B in the side lobes.

• Will need a chamber to control background

• Approximate achievable uncertainties:

$$u^{2}(\overline{T}_{T}) = \left(1 - \frac{1}{\alpha \eta_{AT}}\right)^{2} u^{2}(T_{a}) + \left(\frac{1}{\alpha \eta_{AT}}\right)^{2} u^{2}(T_{A,out}) + (\overline{T}_{T} - T_{a})^{2} \left(\frac{u^{2}(\eta_{AT})}{\eta_{AT}^{2}} + \frac{u^{2}(\alpha)}{\alpha^{2}}\right)$$

$$u(T_a) \approx 0.2 \text{ K}$$

 $u(T_{A,out}) \approx 0.3 - 0.5 \text{ K} \text{ (for } T_{A,out} = 200 \text{ to } 300 \text{ K},$
 $18 - 26.5 \text{ GHz})$

 $u(\eta_{AT}) \approx 0.003$ $u(\alpha) \approx 0.005$

• So should be able to get $u(\overline{T}_T) \approx 0.3 \text{ K to } 0.7 \text{ K}$ for $T_{A,out} = 200 \text{ to } 300 \text{ K}, 18 - 26.5 \text{ GHz}$

Most microwave remote sensing programs use a standard target, a blackbody radiator.

- Need to know
 - surface temperature and uniformity (thermometers embedded at a few locations in *back* of target)
 - emissivity (no generally accepted standard measurement method)
 - pattern (or near-field effects)

• Measured antenna pattern for a standard-gain horn (SGH) on the near-field range

Far-field at K-Band Standard Gain Horn at 26 GHz

Far-field at K-Band Standard Gain Horn at 26 GHz

- Integrate pattern to get η_{AT} ; value depends on frequency & distance. At 26 GHz, $\eta_{AT} = 0.980$ at 50 cm, $\eta_{AT} = 0.301$ at 5 m
- Compute α from conductivity. $\alpha = 0.9954 \pm 0.0023$ at 26 GHz
- Connected SGH to the DUT plane of the WR-42 (18 – 26.5 GHz) waveguide radiometer

- Borrowed hot calibration targets from NOAA GSR (Al Gasiewski & Marian Klein, NOAA ETL) and NASA Goddard (Paul Racette)
- Measured it in the NIST anechoic chamber at 18, 22, & 26 GHz for several distances

• 5 m results discrepancy probably just due to (mis)alignment

• Uncertainty large due to large $u(\eta_{AT}) = 0.0153$. Would be $u(\eta_{AT}) \approx 0.003$ if we knew target location better.

- Summary (standard radiometer)
 - Have developed framework and performed preliminary measurements
 - Expect uncertainties of about 0.5 0.7 K for $T_B = 200$ to 300 K, f = 18 - 26 GHz (Larger uncerts for higher/lower temperatures and/or higher frequencies)
 - Connection to thermal-vac testing must still be established.

- Have also investigated
 - Material properties measurements
 - Antenna near-field effect (preliminary)
 - Detector nonlinearity
- Suggest a "hybrid" standard, which would consist of a standard radiometer + a standard target
 - Independent realizations of T_B
 - Would reduce uncertainties somewhat
 - Greater flexibility
 - More robust (and credible)
- Transfering the T_B standard would involve either:
 - A second (portable) target calibrated with the full standard
 - Measuring a customer's target or radiometer at NIST with the full standard

- Calibration targets close to the sensing antenna:
 - linear radiometers need \geq two standards for calibration.
 - satellites: cold sky, if possible (far-field)
 - otherwise: hot & cold targets (near-field)
 - Scene is always far-field
- Near-field targets introduce two general types of error in a total-power radiometer:
 - Antenna+target affects antenna pattern, directivity (ignore)
 - $\Delta \Gamma$ at antenna output due to non-ideal target (this work):
 - Difference in *M* (mismatch factor) for target, scene
 - Difference in system F and G_{av} " " "

• Measured Γ_c , Γ_∞ (thus $\Delta\Gamma$) with ANA for several combinations of antenna and target.

NASA target and NOAA antenna

NASA target, NOAA antenna Γ_c, Γ_∞

AIMR Antenna & Target

• AIMR antenna & target, $T_{x,0}$ from 200 K to 300 K:

$$u_{tot}^{(0)} \approx \sqrt{2} \left| X_{12} \right| \left| \Delta \Gamma \right|_{RMS} \approx 5.2 \, K$$

- Prior AIMR cal checks show agreement to within ~ 2 K
 - $-|X_{12}|$ may be overestimated due to meas. time span
 - Spare feedhorn w/o reflector may differ from actual components
 - RMS value is an average; actual instrument is just one position
- Add input isolator with $|S_{11}|=0.025$; for $|T_{x,0} T_a| \le 50$ K

$$u_{tot}^{(0)} \approx 1 K$$

• NOAA ant., NASA target, $T_{x,0}$ from 200 K-300 K:

$$u_{tot}^{(0)} \approx 0.0033 \left| X_{12} \right|$$

- |X₁₂| could be 100 K or more, so uncertainty could be ≥ 0.3 K
 Significant for some radiometers to be deployed in the next decade
- With an input isolator:

$$u_{tot}^{(0)} \approx 0.95 \ K \times \left| S_{11}^{I} \right|$$
$$u_{tot}^{(0)} \le 0.1 K$$

IR Thermal Image of Target

							ŧ.				
							9				
										-	
							÷.				
							÷				
							÷				
							¢.				

Detector nonlinearity study

Standard terminology for microwave radiometry

- Developed in cooperation with CEOS WGCV
- Link at:

http://boulder.nist.gov/div818/81801/Noise/index.html

- $\mu W T_B$ traceable to fundamental physical quantities requires either a radiometer, a target, or both, referenced to primary (SI-based) standards
- NIST advocates developing a combined standard
- Noise radiometers at NIST available to cover 1-65 GHz presently (higher possible).
- Significant progress on both approaches (and related calibration issues) at NIST; more R&D needed
- National/int'l commitment is needed to implement a $\mu W T_B$ standard.