NOAA-NIST Meeting on Calibration for Climate Quality Time Series

Comparing MSU T2 Time Series with Ground-based Measurements

Bert W. Rust Math. and Comp. Sci. Div. NIST (Formerly NBS) Gaithersburg, MD

Monday, January 14, 2008, 11:00 AM NOAA Science Center, Room 707 5200 Auth Road Camp Springs, MD 20746

Slide No. 34 from

MSU Intercalibration for Climate Research Using Simultaneous Nadir Overpasses

Presented by Cheng-Zhi Zou

at NIST, September 19, 2007

This paper presents evidence that:

- The T2 time series contains the same signal as the two leading surface temperature records,
- The random scatter about that signal is greater for the T2 record than for the surface temperature records,
- The signal in all of these records contains significant departures from a simple straight line,
- One important component of those departures can be attributed to the El Nino cycle.

http://www.orbit.nesdis.noaa.gov/smcd/emb/mscat/mscatmain.htm

monthly data: tabulated on 144 X 72 X 237 grid area weighted averages: no missing values $\hat{c}_1 = 0.0219 \pm .0020 \ [^\circ C/yr]$

CRU: Climatic Research Unit http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3gl.txt

GISS: Goddard Institute for Space Studies http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts+dSST.txt

$$T(t_i) \equiv \begin{bmatrix} \text{Temp. "anomaly"} \\ \text{for year } t_i \end{bmatrix}$$
$$\equiv \begin{bmatrix} \text{Av. Temp.} \\ \text{in year } t_i \end{bmatrix} - \begin{bmatrix} \text{Reference} \\ \text{Temperature} \end{bmatrix}$$

CRU: Climatic Research Unit

$T(t) = \frac{c_0}{c_1} + \frac{c_1}{t}(t - 1987.0)$

Thijsse and Rust, *Computing in Science & Engineering*, **10** (Jan/Feb 2008) pp. 49-59.

Components of Variance in the Temperature Record

Baseline, Sinusoid and Residuals

- Atmosphere warmed by 0.9°C in 1856-2004.
- Warming linearly proportional to increase in c(t).
- The warming is accelerating!

SSR	<i>T</i> 2	T_{CRU}	T_{GISS}
CO ₂ -driven Model	7.228	3.682	5.228
Straight Line Model	7.290	3.584	5.039

Fourier Analysis of T2 Residuals

 $T2(t) = c_0 + c_1 t$

For largest peak in variance (power) spectrum, $Freq. = 0.279 \text{ yr}^{-1}$ Period = 3.58 yr = 43.0 mo.

$$T2(t) = c_0 + c_1 t + A \sin\left[\frac{2\pi}{43.0}(t + \phi)\right]$$

 $\hat{c}_0 = 0.0219 \pm .0017 \ ^\circ C \qquad \hat{A} = 0.133 \pm .014 \ ^\circ C$