NOAA-NIST Meeting on Calibration for Climate Quality Time Series

Comparing MSU T2 Time Series
 with Ground-based Measurements

Bert W. Rust
Math. and Comp. Sci. Div.
NIST (Formerly NBS)
Gaithersburg, MD

Monday, January 14, 2008, 11:00 AM
NOAA Science Center, Room 707
5200 Auth Road
Camp Springs, MD 20746

Slide No. 34 from
 MSU Intercalibration for Climate Research Using Simultaneous Nadir Overpasses

Presented by Cheng-Zhi Zou at NIST, September 19, 2007

SNO calibrated anomaly time series
alrad trencl

This paper presents evidence that:

- The $T 2$ time series contains the same signal as the two leading surface temperature records,
- The random scatter about that signal is greater for the $T 2$ record than for the surface temperature records,
- The signal in all of these records contains significant departures from a simple straight line,
- One important component of those departures can be attributed to the El Nino cycle.
http://www.orbit.nesdis.noaa.gov/smcd/emb/mscat/mscatmain.htm
pentad data: tabulated on $144 \times 72 \times 1442$ grid area weighted averages: 19 missing values

$$
\widehat{c}_{1}=0.0164 \pm .0010\left[{ }^{\circ} \mathrm{C} / \mathrm{yr}\right]
$$

Pentad GI. Av. T2 Anomalies (1987-2006)

Monthly GI. Av. T2 Anomalies (1987-2006)

monthly data: tabulated on $144 \times 72 \times 237$ grid area weighted averages: no missing values

$$
\hat{c}_{1}=0.0219 \pm .0020\left[{ }^{\circ} \mathrm{C} / \mathrm{yr}\right]
$$

CRU: Climatic Research Unit

 http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3gl.txt

GISS: Goddard Institute for Space Studies
http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts+dSST.txt

$$
\begin{aligned}
T\left(t_{i}\right) & \equiv\left[\begin{array}{c}
\text { Temp. "anomaly" } \\
\text { for year } t_{i}
\end{array}\right] \\
& \equiv\left[\begin{array}{c}
\text { Av. Temp. } \\
\text { in year } t_{i}
\end{array}\right]-\left[\begin{array}{c}
\text { Reference } \\
\text { Temperature }
\end{array}\right]
\end{aligned}
$$

CRU: Climatic Research Unit

$$
\left[\begin{array}{c}
\text { Reference } \\
\text { Temperature }
\end{array}\right]=\left[\begin{array}{c}
\text { Av. Temperature } \\
\text { for 1961-1990 }
\end{array}\right]
$$

GISS: Goddard Institute for Space Studies

$$
\left[\begin{array}{c}
\text { Reference } \\
\text { Temperature }
\end{array}\right]=\left[\begin{array}{c}
\text { Av. Temperature } \\
\text { for 1951-1980 }
\end{array}\right]
$$

$$
T(t)=c_{0}+c_{1}(t-1987.0)
$$

$T(t)=c_{0}+c_{1}(t-1987.0)$

T2: $\hat{c}_{1}=0.0219 \pm .0020^{\circ} \mathrm{C} / \mathrm{yr}$
$\left(T_{C R U}-0.289^{\circ} \mathrm{C}\right): \quad \hat{c}_{1}=0.0197 \pm .0014^{\circ} \mathrm{C} / y r$
$\left(T_{G I S S}-0.374^{\circ} \mathrm{C}\right): \quad \hat{c}_{1}=0.0183 \pm .0017^{\circ} \mathrm{C} / \mathrm{yr}$

Residuals: $T_{i}-T\left(t_{i}\right)$

Residual Distributions

spline2: Optimal regression spline fit

Thijsse and Rust, Computing in Science \& Engineering, 10 (Jan/Feb 2008) pp. 49-59.

Components of Variance in the Temperature Record

- Atmosphere warmed by $0.9^{\circ} \mathrm{C}$ in $1856-2004$.
- Warming linearly proportional to increase in $c(t)$.
- The warming is accelerating!

SSR	$T 2$	$T_{C R U}$	$T_{G I S S}$
CO_{2}-driven Model	7.228	3.682	5.228
Straight Line Model	7.290	3.584	5.039

Fourier Analysis of T2 Residuals

$$
T 2(t)=c_{0}+c_{1} t
$$

For largest peak in variance (power) spectrum, Freq. $=0.279 \mathrm{yr}^{-1} \quad$ Period $=3.58 \mathrm{yr}=43.0 \mathrm{mo}$.

For T2, $\quad V_{\max }$ at Period $=3.58 \mathrm{yr}=43.0 \mathrm{mo}$
For $T_{C R U}, \quad V_{\max }$ at Period $=3.55 \mathrm{yr}=42.6 \mathrm{mo}$
For $T_{G I S S}, \quad V_{\max }$ at Period $=3.58 \mathrm{yr}=43.0 \mathrm{mo}$

$$
\hat{c}_{0}=0.0219 \pm .0017^{\circ} \mathrm{C} \quad \widehat{A}=0.133 \pm .014^{\circ} \mathrm{C}
$$

