Global Space-based Inter-Calibration System (GSICS)

Mitchell D. Goldberg,

GSICS Exec Panel Chair NOAA/NESDIS Chief, Satellite Meteorology and Climatology Division

Mitch.Goldberg@noaa.gov

Space-Based component of the Global Observing System (GOS)

What is GSICS?

- Global Space-based Inter-Calibration System (GSICS)
- Goal Enhance calibration and validation of satellite observations and to intercalibrate critical components global observing system
- Part of WMO Space Programme
 - GSICS Implementation Plan and Program formally endorsed at CGMS 34 (11/06)
- NOAA is the coordination center and chairs the GSICS executive panel

Organizations contributing to GSICS

- NOAA
- NIST
- NASA
- EUMETSAT
- CNES
- CMA
- JMA
- KMA

GSICS current focus is on the intercalibration of operational satellites, and makes use of key research instruments such as AIRS and MODIS to intercalibration the operational instruments

Motivation

- Demanding applications require well calibrated and intercalibrated measurements
 - Climate Data Records
 - Radiance Assimilation in Numerical Weather Prediction
 - Data Fusion
- Growing Global Observing System (GOS)
 GEOSS

GSICS Objectives

- To improve the use of space-based global observations for weather, climate and environmental applications through operational inter-calibration of satellite sensors.
 - Observations are well calibrated through operational analysis of instrument performance, satellite intercalibration, and validation over reference sites
 - Pre-launch testing is traceable to SI standards
- Provide ability to re-calibrate archived satellite data with consensus GSICS approach, leading to stable fundamental climate data records (FCDR)

RSSC to maximize data usage

- Regional/Specialized Satellite Centres
 - Mobilize effort and expertise in some centres (or distributed virtual centres) to provide quality-controlled products following agreed specifications
 - Initial scope is Climate Monitoring (RSSC-CM) responding to GCOS requirements
 - A number of potential participating agencies
 - Implementation Plan being developed by EUMETSAT for adoption in November 07

National Environmental Satellite, Data, and Information Service

GSICS Formulation Team

- Mitch Goldberg NOAA/NESDIS (Chair)
- Gerald Fraser /Raju Datla- NIST
- Donald Hinsman WMO (Space Program Director)
- Xu Jianmin (CMA)
- Toshiyuki Kurino (JMA)
- John LeMarshall JC Sat. Data Assimilation
- Paul Menzel NOAA/NESDIS
- Tillmann Mohr WMO
- Hank Revercomb Univ. of Wisconsin
- Johannes Schmetz Eumetsat
- Jörg Schulz DWD, CM SAF
- William Smith Hampton University
- Steve Ungar CEOS, Chairman WG Cal/Val

Building Blocks for Satellite Intercalibration

- Collocation
 - Determination and distribution of locations for simultaneous observations by different sensors (space-based and in-situ)
 - Collocation with benchmark measurements
- Data collection
 - Archive, metadata easily accessible
- Coordinated operational data analyses
 - Processing centers for assembling collocated data
 - Expert teams
- Assessments
 - communication including recommendations
 - Vicarious coefficient updates for "drifting" sensors

Other key building blocks for accurate measurements and intercalibration

- Extensive pre-launch characterization of all instruments traceable to SI standards
- Benchmark instruments in space with appropriate accuracy, spectral coverage and resolution to act as a standard for intercalibration
- Independent observations (calibration/validation sites ground based, aircraft)

GSICS Organization

GSICS Components

- GSICS Executive Panel reps from each satellite agency
 - Priorities, objectives and agreements
- GSICS Coordination Center (GCC) NESDIS/STAR
 - Transmit intercalibration opportunities to GPRCs
 - Collect data from the GPRCs and provide access
 - Quarterly reports on performance
- GSICS Processing and Research Centers (GPRCs)
 - Satellite agencies
 - Activities:
 - Pre-launch calibration
 - Intersatellite calibration
 - Supporting research

Calibration Support Segments (CSS)

- The GSICS Calibration Support Segments (CSS) will be carried out by participating satellite agencies, national standards laboratories, major NWP centers, and national research laboratories. CSS activities are:
- **Prelaunch Characterisation,** reference instruments, SI traceability
- Earth-based reference sites, such as stable desert areas, long-term specially equipped ground sites, and special field campaigns, will be used to monitor satellite instrument performance.
- Extra-terrestrial calibration sources, such as the sun, the moon, and the stars, will provide stable calibration targets for on-orbit monitoring of instrument calibration
- **Model simulations** will allow comparisons of radiances computed from NWP analyses of atmospheric conditions with those observed by satellite instruments
- **Benchmark measurements** of the highest accuracy by special satellite and ground-based instruments will help nail down satellite instrument calibrations

Integrated Cal/Val System Architecture

2007 Activities

- Annual Operating Plan
- Two GRWG meetings (chair, Fred Wu)
 - Consensus algorithms for LEO to GEO intercalibration
- GDWG (chair, Volker Gaertner)
 - Data management issues, metadata
- Commissioned GSICS Website and routine LEO to LEO intersatellite calibration, with performance reports at NESDIS
- Intercomparisons of AIRS and IASI

Simultaneous Nadir Overpass (SNO) Method -a core component in the Integrated Cal/Val System

•Has been applied to microwave, vis/nir, and infrared radiometers for on-orbit performance trending and climate calibration support

•Capabilities of 0.1 K for sounders and 1% for vis/nir have been demonstrated in pilot studies

- Useful for remote sensing scientists, climatologists, as well as calibration and instrument scientists
- •Support new initiatives (GEOSS and GSICS)
- Significant progress are expected in GOES/POES intercal in the near future

GOES vs. POES16

Satellite Intercalibration improves MSU time series

- NESDIS/STAR completed a recalibration on the MSU atmospheric channels for NOAA 10 to 14
- The current MSU data are well merged and provide accurate climate trend values.
- The radiance data are well merged for assimilation in reanalysis systems.

Intersatellite bias removal among the NOAA MSU instruments are crucial for climate trend detection.

Top: Ocean-averaged MSU channel 2 time series for NOAA 10, 11, 12, and 14 for 1987-2007 before the SNO calibration; Bottom: Anomaly time series for MSU channels 2, 3, and 4 after the SNO recalibration. The abbreviations Middle Troposphere, Temperature Tropopause and Stratosphere TMT, TTS, and TLS refer respectively to Temperature, and Temperature Lower Stratosphere. 17

Courtesy of C. Zou

Global Space-Based Inter-Calibration System

HOME

- PARTNERS
- ORGANIZATION
- PERSONNEL
- NEWSLETTERS
- SCIENCE PAGES
- SEMINARS
- MEETINGS
- PUBLICATIONS
- LINKS
- OPPORTUNITIES

000149

Number of Visitors since Aug. 27, 2007

Mission:

Assure high-quality, inter-calibrated measurements from the international constellation of operational satellites to support the GEOSS goal of increasing the accuracy and interoperability of environmental products and applications for societal benefit.

Goals:

The primary goal of GSICS is to improve the use of space-based global observations for weather, climate and environmental applications through operational inter-calibration of the space component of the WMO World Weather Watch (WWW) Global Observing System (GOS) and Global Earth Observing System of Systems (GEOSS). The basic GSICS strategies to achieve this goal are:

- To establish a GSICS Virtual Library to efficiently share information, software and data relevant to calibration;
- To build collaborations ensuring that each satellite instrument meets specifications by making prelaunch tests traceable to SI standards;
- To improve on-orbit calibration of satellite instrument observations by means of an integrated cal/val system, including instrument performance monitoring, inter-satellite/intersensor calibration, lunar and stellar calibration, vicarious calibration and validation with reference sites;
- To establish a distributed research component and a plan for research to operations transition;
- To build collaborations to retrospectively recalibrate archive satellite data using the operational inter-calibration system in order to make satellite data archives worthy for NWP forecasts and climate studies.

NORR

Satellite Inter-Calibration

LEO - LEO

Microwave Sounder Microwave Imager Infrared Sounder VIS/IR Imager Method and Result Documentation

GEO -LEO

Infrared Sounder VIS/IR Imager Method and Result Documentation

Microwave Sounder @:Active D: Inactive

Back to the Top

NORR

Intersatellite Instrument Characteristics

POES NOAA18 AMSU-A and Metop-A AMSU-A

повя

LEO-LEO SNO Ensemble Statistics														
Satellite 1:	NOAA18	Sat	ellite 2	: ME:	TOP02									
Instrument 1:	AMSUA	Ins	trument	2: 2	AMSUA									
Ch_I1 Ch_I2	Parameter Hemis	#SNOs	Average	StandDev	GaussDist	Sig_Avg	Trend_Param(t)	Sig_Trend	<pre>Slope_Param(BrT/Refl)</pre>	Sig_Slope	<pre>Avg_I1(BrT/Refl)</pre>	<pre>Avg_I2(BrT/Refl)</pre>	Avg_delTime	Avg_delLoc
00001 00001	BrTempBias South	31	0.504	0.941	Yes	no@99%	-2.930	no@99%	-1.6185E-02	no@99%	202.244	202.748	15.3	19.69
00002 00002	BrTempBias South	31	0.473	0.966	No	no@99%	-2.190	no@99%	-1.8961E-02	yes099%	201.121	201.595	15.3	19.69
00003 00003	BrTempBias South	32	-0.200	0.536	Yes	no@99%	-5.857	yes@99%	5.1997E-03	no@99%	218.958	218.759	15.3	19.69
00004 00004	BrTempBias South	32	-0.226	0.201	Yes	yes@99%	-2.822	yes@99%	6.3014E-03	yes099%	230.785	230.559	15.3	19.69
00005 00005	BrTempBias South	32	-0.230	0.165	No	yes@99%	-1.698	yes@99%	9.3951E-03	yes099%	230.518	230.288	15.3	19.69
00006 00006	BrTempBias South	32	0.078	0.094	No	yes@99%	-1.668	yes@99%	7.4439E-03	yes@99%	223.174	223.251	15.3	19.69
00007 00007	BrTempBias South	32	0.291	0.084	No	yes@99%	-0.649	no@99%	1.8069E-03	no@99%	216.976	217.267	15.3	19.69
80000 80000	BrTempBias South	32	0.187	0.094	Yes	yes@99%	0.907	yes@99%	-2.0781E-03	no@99%	213.513	213.700	15.3	19.69
00009 00009	BrTempBias South	32	0.273	0.116	No	yes@99%	-1.634	yes@99%	1.6123E-03	no@99%	210.095	210.369	15.3	19.69
00010 00010	BrTempBias South	32	0.369	0.138	No	yes@99%	-0.530	no@99%	4.9849E-04	no@99%	210.686	211.054	15.3	19.69
00011 00011	BrTempBias South	32	0.366	0.147	Yes	yes@99%	-1.314	yes@99%	5.1872E-04	no@99%	213.685	214.051	15.3	19.69
00012 00012	BrTempBias South	32	0.230	0.145	No	yes@99%	-1.222	no@99%	4.8267E-04	no@99%	221.238	221.469	15.3	19.69
00013 00013	BrTempBias South	32	0.130	0.222	Yes	no@99%	-2.263	yes@99%	-8.9412E-04	no@99%	233.044	233.174	15.3	19.69
00014 00014	BrTempBias South	32	0.023	0.380	No	no@99%	1.305	no@99%	-3.1174E-03	no@99%	246.620	246.643	15.3	19.69
00015 00015	BrTempBias South	32	0.089	1.104	Yes	no@99%	-9.018	no@99%	-2.0378E-03	no@99%	203.449	203.537	15.3	19.69
00001 00001	BrTempBias North	29	0.278	1.493	No	no@99%	12.175	no@99%	-6.1263E-03	no@99%	214.128	214.406	16.0	19.67
00002 00002	BrTempBias North	29	0.244	1.593	No	no@99%	13.848	no@99%	-8.5765E-03	no@99%	213.032	213.276	16.0	19.67
00003 00003	BrTempBias North	29	-0.350	0.503	No	yes@99%	-6.933	no@99%	-1.4771E-02	yes@99%	234.872	234.521	16.0	19.67
00004 00004	BrTempBias North	29	-0.099	0.136	Yes	yes@99%	-2.446	no@99%	-3.2917E-03	no@99%	245.023	244.924	16.0	19.67
00005 00005	BrTempBias North	29	-0.124	0.108	Yes	yes@99%	-1.005	no@99%	-3.1786E-03	no@99%	241.009	240.886	16.0	19.67
00006 00006	BrTempBias North	29	0.103	0.077	No	yes@99%	-0.262	no@99%	8.5038E-04	no@99%	230.615	230.719	16.0	19.67
00007 00007	BrTempBias North	29	0.336	0.072	No	yes@99%	0.565	no@99%	1.1509E-03	no@99%	224.128	224.464	16.0	19.67
80000 80000	BrTempBias North	29	0.207	0.086	Yes	yes@99%	0.205	no@99%	3.3178E-04	no@99%	221.386	221.593	16.0	19.67
00009 00009	BrTempBias North	29	0.304	0.113	No	yes@99%	1.940	no@99%	6.5323E-04	no@99%	219.825	220.129	16.0	19.67
00010 00010	BrTempBias North	29	0.346	0.114	Yes	yes@99%	1.512	no@99%	1.3000E-03	no@99%	221.043	221.389	16.0	19.67
00011 00011	BrTempBias North	29	0.403	0.148	Yes	yes@99%	1.642	no@99%	-1.7633E-04	no@99%	224.738	225.141	16.0	19.67
00012 00012	BrTempBias North	29	0.247	0.239	Yes	yes099%	0.201	no@99%	-2.4013E-03	no@99%	232.296	232.543	16.0	19.67
00013 00013	BrTempBias North	29	0.195	0.284	No	yes099%	-3.925	no@99%	-1.2264E-02	yes@99%	243.009	243.204	16.0	19.67
00014 00014	BrTempBias North	29	0.102	0.541	No	no@99%	-5.361	no@99%	-2.5504E-02	yes@99%	253.781	253.884	16.0	19.67
00015 00015	BrTempBias North	29	0.123	1.217	No	no@99%	-22.803	no@99%	-2.2769E-02	no@99%	222.534	222.657	16.0	19.67

32^ISNOs, BIAS 0.27 K, STDV 0.116 Avg Time Dif 15.3 secs, Avg Dist 19.7 km

B S R

Routine Intercalibration of AIRS and IASI

Situation 16th of April

- IASI in External Cal.
 - Close to nadir
- Many comparison opportunities
 - > 49 used
- Good uniformity
 - Cold scene

image AIRS sur le canal 392, dans une fenêtre atmosphérique

GSICS GRWG- II - 12-14 June 2007, Darmstaut, Germany

Radiometric calibration — IASI versus AIRS

Summary results (case 16th of April 2007)

- IASI External Calibration Mode. Very uniform situation
- 9 pseudo-channels / 49 soundings / 210 K in atmospheric window
- Differences scaled to 280 K reference temperature

2008 Activities

- Commission intercalibration of MTSAT, MSG, GOES and FY2 Infrared Imagers with IASI and AIRS.
 - Routine intercomparisons between MSG (SEVIRI) and AIRS/IASI at EUMETSAT
 - Routine intercomparisons between GOES and AIRS/IASI at NESDIS
 - Routine intercomparisons between MTSAT and AIRS/IASI at JMA
 - Routine intercomparisons between FY2 and AIRS/IASI at CMA

Intercalibration Algorithm Ver 0.0

- Key match-up conditions between GEO and LEO
 - Difference of observing times < 1800 (sec)
 - Difference of 1/cos(sat. zenith angles) < 0.05
 - Environment uniformity check
 - To choose only spatially uniform area to alleviate navigation error, MTF, observing time difference, optical path difference, etc.
 - Environment domain = 11x11 IR pixel box (MTSAT-1R vs. AIRS)
 - env_stdv_tb < (TBD)
 - Representation check of LEO-size GEO pixels in the environment
 - z-test
 - LEO FOV = 5x5 IR pixel box (MTSAT-1R vs. AIRS)
 - abs(fov_mean_tb env_mean_tb) < Gaussian x env_stdv_tb / 5

TB Comparison and Radiance Comparison

GSICS Research Working Group Meeting II on 12-14 June 2007

IASI Spectrum – MSG Filter

(Koenig)

Page 30

"Homogeneous" Targets (WV6.2)

Meteosat-8 and Meteosat-9

12-14 June 2007

Results for 27 April 2007

Channel	∆T IASI – Meteosat-8 *	∆T IASI – Meteosat-9 *
IR3.9	-0.17	-0.20
WV6.2	-0.24	-0.40
WV7.3	-0.51	-0.14
IR8.7	0.15	0.15
IR9.7	0.17	0.20
IR10.8	0.16	0.07
IR12.0	0.19	0.08
IR13.4	0.44	(1.7)

*Uncertainty 0.1 – 0.2 K

Post- launch technical approach for improving satellite instrument characterisation

Satellite-to-Satellite

Satellite-to-Aircraft

Satellite-to-Model

Satellite-to-Reference Sites (including Lunar and Star calibration)

National Environmental Satellite, Data, and Information Service

SRF Shift for HIRS Channel 6

With SRF shift 0.2 cm-1

Since the HIRS sounding channels are located at the slope region of the atmospheric spectra, a small shift of the SRF can cause biases in observed radiances.

-0.4

IASI minus HIRS (K)

National Environmental Satellite, Data, and Information Service

AIRS spectrum and Aqua MODIS Band Spectral Response Functions (Tobin)

MODIS Band / wavelength(µm)

1.5

1

0.5

0

1

-1 -2

-50

Tb diff (K)

AIRS BT (K)

AIRS minus MODIS (K)

NORR

Example comparisons for band 34 (13.7 μ m) on 6 Sept 2002.

Band 35 (13.9 µm) brightness temperature differences for one orbit of data on 6 Sept 2002 using (1) the nominal MODIS SRF and (2) the MODIS SRF shifted by

NWP can benefit with improved characterization of spectral response instead of relying on statistical bias corrections!!!

Difficulty II: to find measurements with long term stability

Mean bias CHAMP-COSMIC temp from 500mb to 5 mb =-0.021K

COSMIC (launched in 2006) vs. CHAMP (launched in 2000) atm tmp

Slide 25

Shu-peng Ben Ho, UCAR/COSMIC

Can we use GPS RO data to calibrate other instruments ?

Slide 18 (Ho et al., TAO, 2007)

Shu-peng Ben Ho, UCAR/COSMIC

The precision of using GPS RO data to inter-calibrate other satellite is about 0.07 K

Satellite to Aircraft

National Environmental Satellite, Data, au Seu Oferaircraft interferometers to validate AIRS

NORR

8 AIRS FOVs and SHIS Data w/in them (448 fovs) used in the following comparisons

Night-time case summary: Shortwave

Excellent agreement for night-time comparison from Adriex/Italy campaign

Gulf of Mexico Validation case: 2002.11.21

M-10

M-05

M-04d

M-04a

M-04c -0.01 ± 0.15 О Т_ь diff (K)

1

-1

Satellite to Model

Understanding Global Biases and Developing Calibration Algorithms for Bias Correction

SSMIS (54.4 GHz)

•SSMIS is the first conical microwave sounding instrument, precursor of NPOESS CMIS.

•Shown are the differences between observed and simulated measurements.

Biases are caused by 1) antenna emission, 2) direct solar heating to warm load and 3) stray light contamination to its calibration targets.

Satellite to Ground

Global Radiosondes

 $N = 77.6 \frac{P}{T} + 3.73 \times 10^5 \frac{P_W}{T^2}$

(Kuo et al., GRL, 2005)

Slide 36

Shu-peng Ben Ho, UCAR/COSMIC

50

Mean Absolute Fractional Differences and Standard Deviation (S.D.) of Refractivity Between CHAMP RO Soundings and the Soundings From Five Different Types of Radiosonde System

Reigns	SondeType	#of Mtabes	De	De	
			NradS.D.	Nerrowf/S.D.	
India	IMMK3	87	0.82/3.2	0.15/1.	
Ruiss	Mars	1003	0.3/1.3	0.09/0.9	
Japa	MEISEI	107	0.26/1.7	0.14/1.1	
China	Starghai	402	0.19/1.4	0.15/1.0	
Ausraia	Vissala	366	0.18/1.3	0.13/0.9	

National Environmental Satellite, Data, and Information Service

AVHRR VIS/NIR Vicarious Calibration using the Libyan Desert Target

Courtesy of X. Wu

DOE ARM TWP reference sites to improve radiative transer

Frost-Point Observations Show Significant Deviations

Frost-Point Observations by H. Voelmer: NOAA Boulder Represents far fewer observations than RS-90's and inconsistencies day vs night.

Diamonds are CO_2 Biases for channels with similar peaking weighting functions.

GSICS Outcome

- Coordinated international intersatellite calibration
 program
- Exchange of critical datasets for cal/val
- Best practices/requirements for monitoring observing system performance (with CEOS WGCV)
- Best practices/requirements for prelaunch characterisation (with CEOS WGCV)
- Establish requirements for cal/val (with CEOS WGCV)
- Advocate for benchmark systems
- Quarterly reports of observing system performance and recommended solutions
- Improved sensor characterisation
- High quality radiances for NWP & Climate