IPY Developments to Measure Arctic Sea Ice
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draft and total thickness at drill-hole sites with a higher uncertainty using this method versus
mode matching. Panel (c) summarizes analysis as a function of scale. Panel (d) compares
integrated thickness (mean) of ground survey (diamonds) and subsamples from submarine
sonar at scales relative to the camp. Panel (e) shows total thickness for all sonar data using the
draft factor in panel (a) with the bold-line distribution showing the 8m truncated version for direct
compatibility with the ground survey. Panel (e) insert shows example integrated thickness to
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deployment campaigns. Both arrays were
deployed near 140W in Autumn and

lasted until Spring breakup. The relevant 100
difference is the deployment of SHEBA 4
buoys deep into the gyre while the "
Beaufort'01 experiment deployed closer @
to the coast. Both circulation patterns

reflect typical gyre circulation patterns for
this region with a strong coastal shear

Figure 1: The combination of (a) large land-based infrastructure plus (b) light-weight, high powered
portable equipment makes today’s field work more time and cost effective than ever before. These
capabilities allowed for huge advancements not only in science but also in (c) outreach and
education with high school teachers joining us in the field while both scientists and their field events
participate live in the classroom. One of the landmark advancements of IPY has clearly been an
increase in near-real time polar science and communication.
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fundamental insight between sea ice material behavior and ice volume changes.



