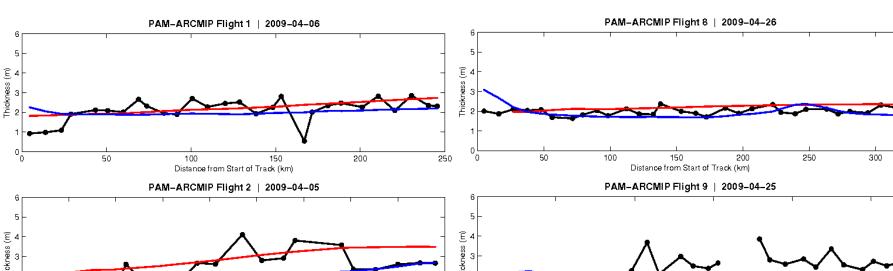
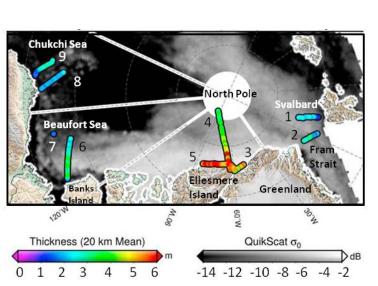

Validation of the Arctic Cap Nowcast/Forecast System (ACNFS) Against Satellite and Observational Data P. Posey¹, J. Metzger¹, A. Wallcraft¹, R. Preller¹, D. Hebert¹, O. M. Smedstad², M. Phelps³ ¹Naval Research Laboratory, Stennis Space Center, MS ²QinetiQ North America ³Jacobs Technology Inc.

Introduction

Validation of a new operational Arctic Cap Nowcast/Forecast system (ACNFS) has been completed. Results of validation test include:

- Ice Thickness
- Ice Extent
- Ice DraftAssimilating Ice
- Concentration Comparisons made with current operational Polar Ice Prediction System (PIPS2.0) where appropriate.

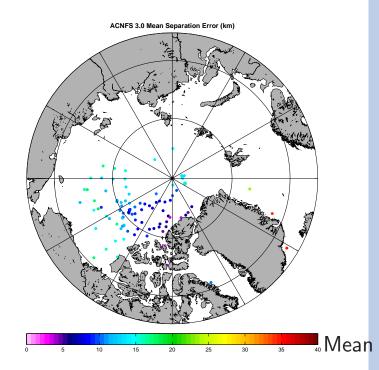

ACNFS Model Overview


ACNFS couples HYbrid Coordinate Ocean Model (HYCOM) with Community Ice CodE (CICE)
~4km resolution (c.f. ~25km PIPS2.0 resolution)
Domain 45-90°N
Ocean/Ice data assimilated via Navy Coupled Ocean Data Assimilation (NCODA)
Ice concentration at ice edge is assimilated
Data exchanged between HYCOM and CICE hourly
ACNFS model run from July 2007-present

Ice Thickness:

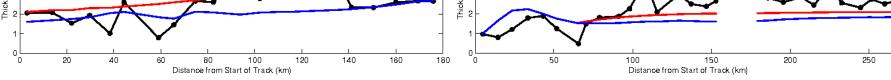
Airborne Observations

- Synoptic Airborne
 Observations measure snow
 + ice along a track (Haas et al. 2010)
- Model data interpolated to track locations



Tracks from Haas et al. 2010

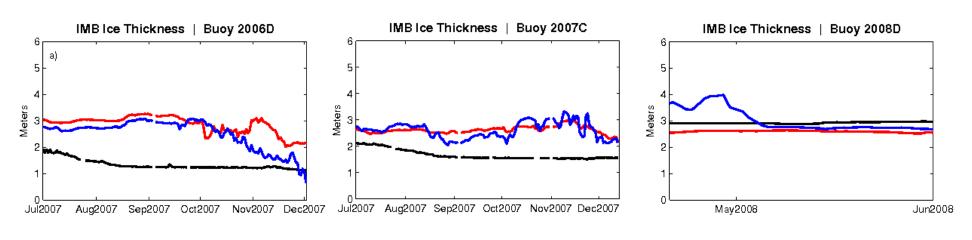
Ice Drifter Location


- 102 ARGOS drift buoys deployed in 2008
- University of Washington
 International Arctic Buoy
 Program (IABP, Dr. Rigor)
- Passive tracer put in model at buoy location each day
- Difference in buoy location and tracer after 24hrs
- ▶ Mean error $\sim 10 \text{km}$
- Largest error in areas of thin ice (east of Greenland) that tends to move faster than thick

separation error (km) plotted at start of each ARGO buoy

Ice Extent

Identify area where ice concentration > 15%
 Compare with extent observed by SSM/I and AMSR-E (data from NSIDC)
 2008


- Black: observed. Blue: ACNFS. Red: PIPS 2.0
- On average ACNFS within 0.5m of observations

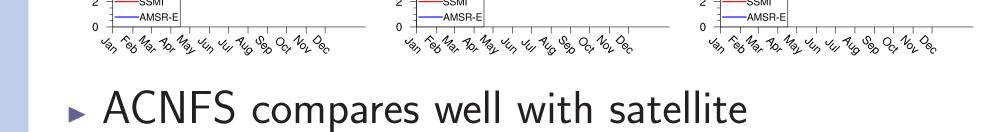
Ice Thickness: Ice Mass Balance Buoys

- Ice Mass Balance Buoys (IMB) deployed 2006-2009 (Perovich et al. 2009)
- Drift time 1-6 months

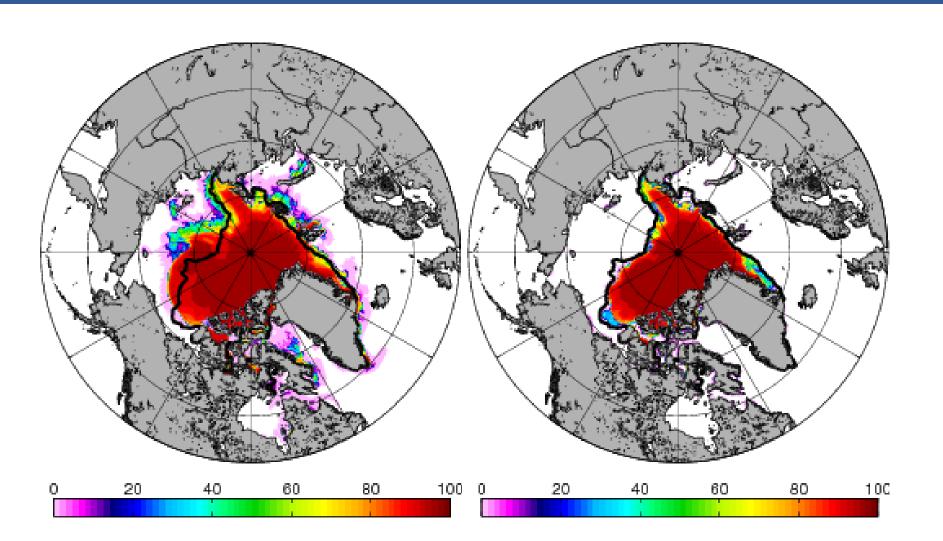
Ice Draft

 \blacktriangleright Mean model ice thickness difference from IMB ${\sim}1.2{\rm m}$

Black: observed. Blue: ACNFS. Red: PIPS 2.0

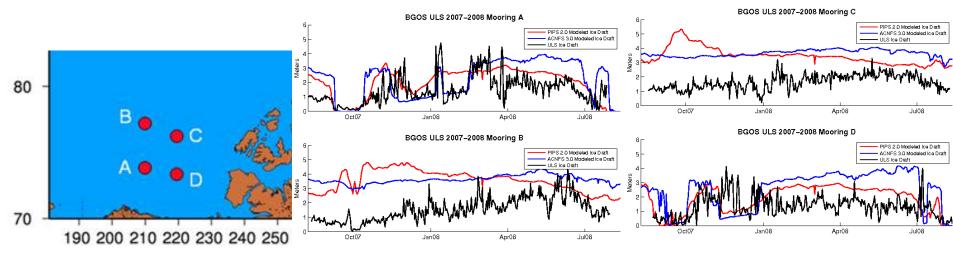

ice (north of Canadian Archipelago)

Ice Drifter Velocity


- Passive tracer inserted into model at each IABP location.
- Velocity components of IABP drift buoys compared to ACNFS tracer velocity.
- Result: Mean model velocity error 1.1cm/s
- As with drifter location, largest errors in areas of thin ice that tend to move faster.

Summary

- Overall, ACNFS compares well with observations:
 - \blacktriangleright Thickness within \pm 1.0m on average
 - Ice extent close to that obtained from satellite
 - ► Draft difference ~1.5m
 - \blacktriangleright Mean 24hr ice drift error ${\sim}10 \rm km$
- Mean 24hr ice drift velocity error ~1cm/s
 Assimilating ice concentration improves ice edge location


Ice Concentration Assimilation

Ice Concentration (%) (Left) without and (Right) with assimilation. Black line is ice edge obtained independently from National Ice Center.

WHOI deployed 4 moored upward looking sonar (ULS) in Beaufort Gyre (Proshutinski 2009).

- ► ULS determines distance to bottom of ice.
- Pressure sensor determines distance to sea surface.
- Pressure ULS = Ice Draft
- 89% ice thickness is underwater and seen as draft (Rothrock et al. 2003)

 \blacktriangleright Mean ACNFS difference ${\sim}1.5{\rm m}$

- ACNFS is running in real-time at NAVO and producing a daily 5-day forecast of ice drift, ice concentration, ice thickness, ocean currents, ocean temperature and salinity.
- NIC is currently evaluating ice products from ACNFS, while NAVO is evaluating the ACNFS ocean products.
- Operational Testing (OPTEST) is scheduled to be complete by end of 2011.

pamela.posey@nrlssc.navy.mil 228.688.5596