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Synergy of weather and composition

The ability of a single sensor depends
critically on the problem to be
addressed.

The operational requirements for
weather have been extensively studied.

What are the operational requirements
for composition in general and
greenhouse gases in particular?
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Race to the bottom

NASA Science Community Workshop
on Polar Orbiting IR and MW Sounders
held in Nov 2010

=2 Specifically focused on weather, climate,

and composition from hyperspectral
sounders

A common theme between weather and

composition is the need for greater

sensitivity to boundary layer processes
at higher spatial resolution



Interplay of dynamics and carbon
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Spatially-resolved attribution of eco-system, oceanic, and anthropogenic source
distribution from atmospheric CO2 concentrations depend on knowledge of tracer
advection, vertical mixing and planetary boundary level (PBL) height.




Multi-spectral sounding strategy

Earth Spectrum (Tropical noon, albedo 0.8)
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TIR only

NIR only

TIR + NIR
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Correlations between CO-CO,
induced through common dynamical
processes can significantly

improve CO, flux estimates.

(Wang et al, 2009, JGR)

Correlations between errors in
paired CO and CO, species between
24 and 48 hour forecasts, i.e.,

E[ACOACO,] (NMC method)
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Application of correlations to
flux estimate results in improvements

up to 60% relative to using CO, alone

Exploitation of correlations in
combustion sources depends on
source homogeneity and knowledge

of scale factor
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NASA Carbon Monitoring Flux Pilot Project

Optimal flux/state
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Fluxes are estimated using a 4D-var
implementation of tracer transport at
2x2.5 -> .5 x .66




Impact of tracer transport
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Spatially resolved attribution of CO, fluxes depend on
« Spatial-temporal distribution of the observing system

« Accuracy of tracer transport (meteorology) in the adjoint

Differences in tracer
transport can lead to flux
estimate uncertainties that
exceed the uncertainties
from the observing system

Houweling et al, 2010
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Trade between Spatial Resolution and/or Coverage

Full Swath vs Aperture Size at 705 km
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Evolutionary Approach using New
Technology:

Wide Field Optics +

Large Format FPA’s =

» Wide Field OCO

 High Resolution AIRS
(Atmospheric Remote-sensing
Imaging Emission Sounder
(ARIES))

Note: OCO-WF requires 15x higher
spectral resolution than ARIES hence
reduced swath

0OCO OCO-WF AIRS ARIES

IFOV 2 km 2 km 13.5 km 1 km
Swath 10 km 200 km 1750 km 2330 km

Nchan 3048 3048 2378 4096

SNR/NEdT 360 360 0.2K 0.2K

Polarization Linear Dual N/A N/A




Simultaneous measurements of
meteorological variables along with
greenhouse gases and atmospheric
chemical species in geo-stationary
orbit could dramatically improve
regional scale flux estimates
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Conclusions

The inference of surface fluxes from CO2
concentrations requires both accurate measurements
and transport models

A multi-spectral strategy that combines IR and NIR
capabilities constrains the CO2 profile

Correlative tracer measurements, e.g., CO, can help
reduce flux uncertainties

High spatial resolution reduces cloud contamination
and PBL variability

Improved meterological constraints are needed for
tracer transport.

There are technical solutions in both LEO and GEO
that could combine these capabillities into a single
Instrument.



Earth System Sounding

Normalized
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Coupling of Earth System Observations

IASI operational and science processing

Chemistry |
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Requirements depend on the goal.
NASA workshop results?
Higher spatial resolution for Weather->clouds
= High spatial resolution for composition—>clouds
Boundary layer processes are becoming a key driver of
requirements for both weather and composition
Key differences from an assimilation perspective
= weather prediction is driven by an initial condition problem
= atmospheric composition is driven equally by a boundary value
problem
Role of Earth System Modeling to understand and predict
changes in the Earth System
= Need for Earth System Assimilation
1 Need for an Earth System Observing Network (ESON)

== Hyperspectral sounders provide the foundation and the glue of an
ESON.

=z Schlussel-EUMETSAT “Evolution of NWP models from
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