

Total Ozone Analysis from Stratospheric and Tropospheric (TOAST) Satellite Sources

Presented by L. Flynn with contributions from J. Niu and the rest of the TOAST Team Date: 2018/08/30

- Team Members and Affiliations
- Blended Product Development
 - Inputs needed for the Blended Product Algorithm
 - Technical Approach
 - Product Examples/Outputs
 - Product Evaluation/Validation/Tools
- Identified Issues/Risks/Mitigations
- Future Algorithm Improvements
- Documentation/website links

Algorithm Team Members

Role	Name	Organization	Task
Lead	Lawrence Flynn	NOAA/NESDIS/STAR	Manage development resources
PAL	Vaishali Kapoor	NOAA/NESDIS/OSPO	Manage implementation resources
Developer	Jianguo Niu	STAR/IMSG	Algorithm development and validation
Implementer	Venkata Rao Anne	OSPO/PSGS	Operational processing and monitoring
Support	Eric Beach	STAR/IMSG	Data management

Blended Product Development Input Needs for the TOAST Algorithm

Required Satellite Data Products

	Data Product Name (Inputs)	Input Data Type (Satellite/Model Forecasts/ <i>In-situ</i>)	Temporal/ Spatial Resolution, Format	Source(s)
1	V8Pro or V2Limb	NOAA-19 SBUV/2 PMF S-NPP/NOAA-20 OMPS EDRs S-NPP OMPS EDRs	Daily PMF Daily NetCDF Daily NetCDF	OSPO NDE NDE
2	NUCAPS Ozone	S-NPP/NOAA-20 CrIS EDRs MetOP-A,-B,-C IASI EDRs	Daily NetCDF Daily NetCDF	NDE NDE
3	TOVS Ozone	Metop-A HIRS EDRs	Daily	NDE

NDE products are in granules with approximately 1100 per day for OMPS

- 1. Blended Product Algorithm Description
- 2. Technical Approach
 - Methods of Bracketing daily data from 180 E to 180 W
 - Quality Control Methods need for improvements
 - Calibration single input for each piece
 - Geo-location Tests from input product Geolocation
 - Gap Handling persistence with distance weighting
 - Handling Duplicates infrequent, duplicates are double weighted

• Basic consideration:

1. IR obs. possess higher sensitivity to tropospheric ozone. 2. UV obs. possess higher sensitivity to stratospheric ozone 3. Combining the IR and UV retrieved O_3 may increase the total column O_3 accuracy.

4. Use analysis to fill in the UV observation gaps.

Basic procedures:

1. Convert IR and UV O_3 pressure scale into same pressure scales.

2. Transform coordinate from geographic into stereographic.

3. Objective analysis.

4. Analyzed global ozone data are transformed back to the geographic coordinate with 1°× 1° resolution.

$$X = \cos\theta \cdot \cos\phi \cdot \frac{\sin\theta_0 + 1}{\sin\theta + 1} \cdot \frac{\text{Re}}{mesh} + \frac{N-1}{2}$$
(1)

$$Y = \cos\theta \cdot \sin\phi \cdot \frac{\sin\theta_0 + 1}{\sin\theta + 1} \cdot \frac{\text{Re}}{\text{mesh}} + \frac{N - 1}{2}$$
(2)

mesh=24,384/(N-1) km, θ_0 =60°; N is mesh grid number; For CrIS N=245; for OMPS N=65

Fig 1. Coordinate transformation from geographic to Stereographic.

$$C = WE \tag{3}$$

 $W = \frac{R^2 - d^2}{R^2 + d^2} \quad (4)$

Any initial value on the grid within radius R of a measurement point A will be corrected by a weighted sum, where E is the difference between the observation and the initial value and W is the weighting factor.

Fig 2. scheme of objective analysis

TOAST Description

Global TOAST Analysis on 20130403 SBUV/2: N19 TOVS: M2 90N 60N 30N 30\$ 60S 90S · 60E 12DE 180 12<mark>0</mark>₩ 6ÓW 210 240 270 300 330 360 390 420 450 150180

The original TOAST is a total column ozone map generated by combining **TOVS** tropospheric and lower stratospheric (4 to 23 km) ozone retrievals with SBUV/2 spatially smoothed mid-to-upper stratospheric (24 to 54 km) layer ozone retrievals. In essence, we are replacing TOVS climatology with real-time SBUV/2 measurements in the mid-to-upper stratosphere.

TOAST (SBUV/2 + HIRS)

Blended Product Workshop: August 30, 2018

eTOAST (SBUV/2 + CrIS)

Blended Product Workshop: August 30, 2018

nTOAST (OMPS NP + CrIS)

Blended Product Workshop: August 30, 2018

Blended Product Development Product(s) Examples/Outputs

Output Data Products

	TOAST (Outputs)	Output Data Type Daily maps of Total Ozone and Ozone Profiles	Spatial, Temporal Resolution, Format
1	TOAST	Total ozone and NOAA-19 SBUV/2 and HIRS layers	1° x 1° Grib, Binary and png
2	eTOAST	Total ozone and NOAA-19 SBUV/2 and NUCAPS	$1^{\circ} \ge 1^{\circ}$ etc.
3	nTOAST	Total ozone and S-NPP/NOAA-20 OMPS-NP and NUCAPS	1° x 1° etc.
4	ITOAST	Total ozone and S-NPP OMPS-LP and NUCAPS	$1^{\circ} \ge 1^{\circ}$ etc.

IDAST using CrIS and OMPS LP (09-03-2013)

Layer reformed vs. analyzed 09-03-2013

• Layer reformed Limb input

• Limb TOAST analyzed

SBUV 12-layer vs. analyzed 09-03-2013

• SBUV-2 input

• TOAST SBUV-2 analyzed

Analyzed 12 Umkehr O₃ layers 09-03-2013

• CrIS

• CrIS + Limb

Comparison of Limb and SBUV/2

20-day average of the relative differences to current version from 09-03-2013 to 09-22-2013

NESDIS

- Product Evaluation/Validation
 - Compared to individual components and their validation.
 - Compared to sunlit Earth from Daily UV Mappers.
- Defined Quality Flags
 - Need to determine how to show where data was updated.

eTOAST versus S-NPP OMPS V8TOz for January 1, 2016

• Provide a list of identified risks/issues/mitigations and any examples identifying artifacts.

Identified Risk/Issues	Action/Mitigation
NOAA-19's Drifting orbit limits SH coverage for TOAST and eTOAST.	Switch to ITOAST and nTOAST using S-NPP and NOAA-20 OMPS products.
Final products do not have flags to show where recent data was available for analysis.	Consider creating maps showing where components were updated.
Product screening for OMPS products does not use error flag information.	Modify code to screen input to only use error flag values of 0, 1, and 10, 11.

- Provided code with better handling of Equatorial "boundary".
- Deliver code with better error flag handling for OMPS.
- Deliver code to read in NetCDF version of Limb Profile products.
- Future Validation Plans for ITOAST
 - Comparisons to MLS and SAGE III
 - Comparisons to OMPS NM and TropoMI
 - Provide code with better error flag handling.
- Use stratospheric ozone analysis fields as A Priori to NUCAPS

Product Outreach Documentation/website links

Toast products can be accessed at the following pages

- <u>https://www.ospo.noaa.gov/Products/atmosphere/toast/index.html</u>
- <u>https://www.ospo.noaa.gov/Products/atmosphere/etoast/index.html</u> <u>https://www.ospo.noaa.gov/Products/atmosphere/ntoast/index.html</u>
- https://www.ospo.noaa.gov/Products/atmosphere/ltoast/index.html

Backup Slides

Current operational eTOAST using CrIS and SBUV-2 for June 8, 2013

- eTOAST is operational
- nTOAST will be soon
- ITOAST is awaiting a new delivery and the start of operational processing at NDE.

Blended Product Development Input Product(s) Requirements

Identify satellite and ancillary data Inputs (use additional slides as needed)

Input Data	Resolution	Source
e.g. $GFS - T(p), q(p)$	0.5 x 0.5 deg; 31 levels	NCEP
e.g. Annual Surface Type	1 km Global	JPSS-VIIRS
e.g. SST	5 km Global	ACSPO

Blended Product Development Output Product(s) Specifications

- Blended Product Name: {SST}
- Output Data Type(s): {S-NPP/NOAA-20/GOES-16}
- If your blended product algorithm produces more than one output product, use additional slides as required.

Output Product(s) Attributes	Threshold	Observed/validated
Latency		
Geographic coverage		
Vertical Coverage		
Vertical Cell Size		
Horizontal Cell Size		
Mapping Uncertainty		
Measurement Range		
Measurement Accuracy		
Measurement Precision		
Measurement Uncertainty		

- Defined Quality Flag(s)
 - Variable, description, value, verification

Quality Flag	Description	Value

- Discuss current status of implementation including the availability in AWIPS or alternatives.
- Algorithm version/LUTs
- Processing environment and resources required for implementation or porting.
- Future plans on implementations including AWIPS or alternatives

Product Outreach Importance/Benefits/Users

- Product Importance/Benefits/Users
- PGRR/PGI Activities

Name	Organization	Application	User Feedback - User readiness dates for ingest of data and bringing data to operations

Product Outreach Documentation/website links

• Provide website links for documentation, down-load instructions, etc.

TOAST TOTAL OZONE MAPS USING CRIS AND OMPS LP PROFILES

Jianguo Niu System Research Group@NOAA/NESDIS/STAR

Larry Flynn, NOAA/NESDIS/STAR

STAR JPSS Annual Science Team Meeting August 9, 2016

at NDE.

- CrIS IR full global day and night profiles
- OMPS NP nadir view vertical profiler
- OMPS NM full daily total ozone for sunlit Earth
- OMPS LP limb view vertical profiles

The current TOAST was developed in 2014

Total Ozone from Analysis of CrIS and SBUV2 in Stratosphere and Troposphere *TOAST* will use CrIS + OMPS NP when OMPS NP is at NDE. *TOAST* will use CrIS + OMPS LP when OMPS LP is

Limb processing algorithm status

- OMPS Limb TOAST and SBUV/2 TOAST show similar global patterns and values in the upper layers (comparison need to introduce retrieval averaging kernels).
- Limb analysis algorithm functions well from the comparison of the EDR input and analyzed figures.
- 20 days of total column Ozone analysis have been tested.
- The averaged relative differences show Limb TOAST total analysis has ±5% differences relative to the current operational version (SBUV/2 TOAST).

Baseline products:

- 12 layers global 1° × 1° layer VCD O_3 maps
- Eight layers of Limb global 1° × 1° layer VCD maps at pressure level of 31.7, 15.8, 7.93, 3.96, 1.98, 0.99, 0.50, 0.25 mb
- Four layers of CrIS global 1° × 1° layer VCD maps at pressure level of 1013, 253, 127, 63.3 mb.

Based on operational request we could:

- Provide 21 layer (V8 layers ~3km) the same analyzed maps
- Provide 61 Limb layers of analyzed maps

- The TOAST algorithm for CrIS + Limb has been developed and tested using NUCAPS and NASA Limb Profiler daily data products.
- The OMSP Limb Profiler SDR and EDR processing algorithms have been successfully transferred from NASA to NOAA, and have completed code and security review, they are ready for implementation the next builds at NDE.

Global Biomass Burning Emissions Product (GBBEPx)

Shobha Kondragunta NOAA/NESDIS STAR

Xiaoyang Zhang South Dakota State University

> Hanjun Ding NOAA/NESDIS OSPO

Funded by JCSDA, G-PSDI, and J-PSDI

Biomass Burning

- Fires release large amounts of aerosols into the atmosphere that have adverse affects on human health and economy
 - Long range transport of smoke from fires impacts air quality in downwind regions. Worldwide 250,000 premature deaths per year (Jacobson, JGR, 2014).
 - Impacts national parks, monuments, and transportation due to reduced visibility.

Ft. McMurray Fire, Canada, May 2016

Types of Fires

- are located, how high is the aerosol loading being emitted, at what height is the plume injection, and the duration of the fire.
- Near real time information from satellites that models need
 - Fire location yes
 - Fire Radiative Power (a proxy to calculate emissions) **yes**
 - Fire duration (if satellite is in geostationary orbit) yes
 - Plume injection no
 - Aerosol composition no

Air Quality Predictions

Emissions Calculation

$$E_x = FRP \times \beta \times F$$

$$E_{fx} = \beta \cdot \frac{FRP}{A} \cdot F$$

E_x: biomass burning emissions (kg) of species x

S: burned area (km²)

F: emission factors (g/Kg)

β: a combustion rate per unit energy (KgC/Joules)

A: area of the pixel

Emission Factors (g/kg) in computing GBBEP-Geo. LC1-forests, LC2-savanna, LC3-shrublands, LC4-grasslands, LC5-croplands.

	LC1	LC2	LC3	LC4	LC5	Average
PM2.5	12.3	7.35	9.3	5.4	5.8	8.04
CO	106.4	63.5	68	59	111	81.58
OC	7.74	4.6	6.6	2.6	3.3	4.97
BC	0.408	0.435	0.5	0.37	0.69	0.481
SO2	0.89	0.58	0.68	0.48	0.4	0.606
CO2	1586	1704	1716	1692	1537	1647.04
CH4	5.42	2.05	2.6	1.5	6	3.514
NOX	2	3.35	3.9	2.8	3.5	3.11
NMHC	4.9	3.4	3.4	3.4	7	4.42
NH3	2.152	0.845	1.2	0.49	2.3	1.3974

8

Generate Diurnal FRP profile for missing hotspots due to clouds certain times of the day

115.4°W, 44.49°N

GBBEPx

12

output of daily emissions, an average of QFED, GBBEP-Geo, VIIRS.

* Not in operations yet

13_

Two examples of fire emissions:

- geostationary satellites only
- MODIS only
- VIIRS only

Total PM2.5 (June 15 – August 15 2017

Daily PM2.5 (June 15 – August 15 2017

Date : 17-20th August,2018 (Total AOD at 550nm)

160W 140W 120W 100W 80W 60W 40W

160W 140W 120W 100W 80W 60W 40W

160W 140W 120W 100W 80W 60W 40W

160W 140W 120W 100W 80W 60W 40W

160W 140W 120W 100W 80W 60W 40W

160W 140W 120W 100W 80W 60W 40W

160W 140W 120W 100W 80W 60W 40W

160W 140W 120W 100W 80W 60W 40W

160W 140W 120W 100W 80W 60W 40W

0.3 0.4 0.5 0.6 0.7

0.05 0.1 0.2

MODIS AOD : 19Aug 80N 60N 40N 20N

160W 140W 120W 100W 80W 60W 40W

1 12 14 16 18

0

0.8 0.9

NWS/NCEP operational model run with **GBBEPx V2**

17

FV3GFS-Chem Simulated AOD

- FV3GFS_Chem is the Next
 Generation Global
 Prediction System
 (NGGPS) for aerosols
- We are currently adapting GBBEPx file format to FV3 grid so it can be tested

Courtesy of NOAA/ESRL

Conclusions

- GBBEPx is an operational product currently being used by operational NGAC v2 aerosol model at NCEP
- Plans underway to add NOAA-20 fire emissions to GBBEPx
- Despite repeated proposal submissions to PSDI to replace legacy GOES and MTSAT with GOES-16/17 and Himawari-8/9 fire emissions, no funding
- GBBEPx sample data were provided to HRRR-smoke model for testing
- GBBEPx output is being adapted for FV3 grid for testing purposes
- Algorithm/product has been published in multiple journal articles

- 1. Li, F., Zhang, X., Kondragunta, S., Csiszar, I., 2018, Comparison of fire radiative power estimates from VIIRS and MODIS observations. *Journal of Geophysical Research-Atmosphere*, <u>https://doi.org/10.1029/2017JD027823</u>.
- Li, F., Zhang, X., Kondragunta, S., Roy, D.P., 2018, Investigation of the fire radiative energy biomass combustion coefficient - a comparison of polar and geostationary satellite retrievals over the Conterminous United States. *Journal of Geophysical Research-Biogeoscience*, 132, 722-739. <u>https://doi.org/10.1002/2017JG004279</u>.
- 3. Huang, R., Zhang, X., Chan, D., Kondragunta, S., Russell, A.G., Odman, M.T., 2018, urned Area Comparisons between Prescribed Burning Permits in Southeastern USA and two Satellite-derived Products. *Journal of Geophysical Research-Atmosphere*, <u>https://doi.org/10.1029/2017JD028217</u>
- 4. Zhang, X., Kondragunta, S., and Roy, D.P., 2014. Interannual variation in biomass burning and fire seasonality derived from geostationary satellite data across the contiguous United States from 1995 to 2011. *Journal of Geophysical Research-Biogeosciences*, <u>http://dx.doi.org/10.1002/2013JG002518</u>.
- Zhang, F., Wang, J. Ichoku, C., Hyer, E., Yang, Z., Ge, C., Su, S., Zhang, X., Kondragunta, S., Kaiser, J., Wiedinmyer, C., and da Silva, A., 2014. Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: A case study in northern sub-Saharan African region. *Environmental Research Letters*, 9, 075002, <u>http://dx.doi.org/10.1088/1748-9326/9/7/075002</u>.
- 6. Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., Huang,H-C, 2012. Near Real Time Global Biomass Burning Emissions Product from Geostationary Satellite Constellation. *Journal of Geophysical Research-Atmosphere*, <u>http://dx.doi.org/10.1029/2012JD017459</u>.

Multi-platform Tropical Cyclone Surface Wind Analysis (MTCSWA) Blended Product

Presented by John Knaff J. Dostalek (CIRA), L. Ma (OSPO) August 30, 2018

- Team Members and Affiliations
- Blended Product Development
- Identified Issues/Risks/Mitigations
- Future Algorithm Improvements
- Product Outreach
- Summary and Path Forward

MTCSWA Blended Product Team

Algorithm Team Members

Name	Organization	Major Task
John Knaff	STAR	Lead Developer
Liqun Ma	OSPO	Lead OSPO
Jack Dostalek	CIRA	Software/implementation support
ASSISTT	STAR	NDE implementation

Blended Product Development

Input Needs for the Blended Product Algorithm

Blended Product Name: MTCSWA

Required Satellite and Ancillary Input Data Products

	Data Product Name (Inputs)	Input Data Type (Satellite/Model Forecasts/In- situ)	Temporal/ Spatial Resolution, Format	Source(s)
1	Wind Scatterometry	METOP-A/B	12-hrly/25 km	OSPO
2	Wind (850, 700 hPa) AMSU	MIRS Retrievals METOP-A/B, NOAA- 18/19	12-hrly/50 km	OSPO
3	Wind (850, 700 hPa) ATMS	MIRS Retrievals SNPP	12-hrly/25 km	OSPO
4	IR-proxy-wind (700 hPa)	GOES-15/16, Metosat- 8/11, Himawari-8	3-hrly/4 km x 10°	OSPO
5	AMV winds	GOES -15/16	3-hrly/variable	OSPO
6	AMV winds	Himawari-8/Metosat	3-hrly/variable	Navy/OSPO
7	TC location/intensity	ATCF (text)	6-hrly	JTWC/NHC

- 1. MTCSWA blends four satellite-based wind estimates compiled over 9 hours
 - **AMVs** below 600 hPa (NESDIS, EUMETSAT, JMA)
 - AMSU/ATMS sounding based winds (solves the balance equations on pressure levels) (Bessho et al. 2007)
 - Advanced Scatterometer
 - IR-Based flight-level proxy winds (given intensity, motion and location estimates the 2-D wind field at 700 hPa) (Knaff et al. 2015, Mueller et al. 2006)
- 2. Technical Approach
 - Moves wind data to a storm-motion-relative framework valid at analysis time.
 - Adjust winds to a **common pressure level** (Franklin et al. 2003)
 - Adjust for lack of frictional inflow for surface winds (Zhang and Ehlhorn 2012)
 - A variational **data fitting** approach in polar coordinates
 - **Adjusts winds** to 10-m oceanic exposure or land (Franklin et al. 2003)
 - **Applies** appropriate frictional **inflow angles** (Zhang and Ehlhorn 2012).

- 1. Microwave Sounder based winds (Bessho et al. 2006)
- 2. Atmospheric Motion Vectors
- 3. IR-based flight-level proxy winds (Knaff et al. 2015)
- 4. Scatterometery

Special treatment of A-SCAT wind speeds

A hurricane specific bias correction is applied to A-SCAT data based on Chou et al (2013).

Results based on collocated dropwindsonde observations

Increases observed winds, especially above 17.5 ms⁻¹ (35 kt) Form of the bias correction

 $S \equiv$ observed A-SCAT wind speed

 $S_c \equiv$ bias corrected A-SCAT wind speed, Where S has units of ms⁻¹

Reference A motion-relative/common level framework

INPUTS:

- 1. Current position and intensity (ATCF)
- 2. Past position and intensity (ATCF)
- 3. Forecast Position/Intensity, if available
- 4. Observed and Proxy winds (last 9 hours)

PROCEEDURE:

- 1. Spline Latitude (t)
- 2. Spline Longitude (t)
- 3. Move observations from their observed time to the analysis time using these estimates for positions
- Calculate r, Θ coordinates based on the analysis center
- 5. Bias correct ASCT
- 6. Adjust winds/inflow angles to a common analysis level (700 hPa)

RESULT:

Observations (9h worth) are in a motion relative framework Observations on a polar grid Observations at a common level (gradient level/ 700 hPa)

These are ready for blending in the analysis

Adjusting winds to common levels (speed)

- Algorithm is based on the findings of Franklin et al. (2003) who defined reductions to the surface in two regions and four pressure layers.
 - 1. Eyewall (within 2 * RMW)
- 2. Outer vortex

٠

 There is also 4% and 17% differences as a function of azimuth in Eyewall and outer regions

Level (hPa)	Eyewall	Outer Vortex
600-800	0.88	0.83
800-900	0.78	0.78
900-990	0.73	0.73
990-Sfc	0.77	0.77

Examples: Reduction Factors (R) from 700 hPa

This algorithm allows for

- 1. Adjustment of the wind speeds to a common level
- 2. Adjustment from the analysis level to the surface following analysis

Adjusting winds to common levels (angles)

Algorithm is based on the findings of Zhang and Ehlhorn (2012) who developed a parameterization for surface inflow angles in hurricanes as a function of radius. translation speed, and intensity

٠

This algorithm allows for

- Adjustment of the inflow angles from the surface to a common level 1.
- Estimation of surface inflow angles for analyzed wind speeds adjusted to the surface 2.

- Based on Thacker (1988) a data fitting method
- Variational (Minimize C)
- Data fitting
- Allows for scalar wind estimates
- Allows for weighting of observation types
- Has adjustable filter weights (r, Θ)
- On a polar grid 4.5 km x 10° (i.e., Makes circles rather than squares)
- Solved iteratively via steepest decent

$$C = \frac{1}{2} \sum_{k=1}^{K} w_{k} \left[(u_{k} - U_{k})^{2} + (v_{k} - V_{k})^{2} \right] + \sum_{m=1}^{M} w_{m} (s_{m} - S_{m})^{2} + \sum_{i=1}^{I} \sum_{j=1}^{J} \left\{ \alpha \left[(\delta_{xx} U_{ij})^{2} + (\delta_{xx} V_{ij})^{2} \right] \\+ \beta \left[(\delta_{yy} U_{ij})^{2} + (\delta_{yy} V_{ij})^{2} \right] \right\}$$

Wind vectors Measures misfit

Wind speeds Measures misfit

Penalty term Acts as a filter

$$\delta_{xx}U_{ij} = (U_{i+1,j} + U_{i-1,j} - 2U_{ij}) / \Delta x^2$$

$$\delta_{yy}V_{ij} = (V_{i+1,j} + V_{i-1,j} - 2V_{ij}) / \Delta y^2$$

Filter weights	Data weights
α	W _k
β	W _m

response function $\mathsf{F}\left(\mathsf{k}\right)$ of the filter weights

 $F(k) = 1/\{1 + 8\alpha[1 - \cos(k\Delta x)]^2\}$

Where x can be r or θ and $\alpha=\beta$

To help overcome the shortcomings of each input data weights are used to weight data selectively as a function of radius, current intensity and data type.

- Weights were tuned using aircraftbased analyses
- Weights are a function of intensity
- Weights are a function of the number of points in the analysis.

AMVs weights = 5.0 for all intensities

Blended Product Development MTCSWA Examples/Outputs

Output Data Products

	Blended Data Product Name (Outputs)	Output Data Type (Satellite; Model Forecasts; In-situ)	Spatial, Temporal Resolution, Format	Source(s)
1	TC Surface Wind Analysis	GOES/Met- op/Metosat/POES/SNPP/H8	10km, 3-hourly, NETCDF	STAR Enterprise NDE
2	TC ATCF-Fix	GOES/Met- op/Metosat/POES/SNPP/H8	Wind Radii, RMW, MSLP, 3- hourly, ASCII	STAR Enterprise NDE

Blended Product Development MTCSWA Examples/Outputs

Output Data Products

Blended Product Development
MTCSWA Examples/Outputs

Output Data Products ATCF Fix

EP, 10, 201808072100, 70, ANAL, MPS, 201808070900, 201808080046,	PR, , 1638N, 14924W , 10, 2, , 2, 922 , 2, MEAS, 34, NEQ, 100, 65, 75, 105 , , , , , 2, 16, , E, CIRA, MPS, , , AMSU CD WV IR ASCT , CIRA Combined Multi-Platform Satellite Analysis
EP, 10, 201808072100, 70, ANAL, MPS, 201808070900, 201808080046,	PR, , 1638N, 14924W , 10, 2, , 2, 922, 2, MEAS, 50, NEQ, 50, 45, 40, 50 , , , , , 2, 16, , E, CIRA, MPS, , , AMSU CD WV IR ASCT , CIRA Combined Multi-Platform Satellite Analysis
EP, 10, 201808072100, 70, ANAL, MPS, 201808070900, 201808080046,	PR, , 1638N, 14924W , 10, 2, , 2, 922 , 2, MEAS, 64, NEQ, 40, 30, 40, 45 , , , , , 2, 16, , E, CIRA, MPS, , AMSU CD WV IR ASCT , CIRA Combined Multi-Platform Satellite Analysis

- Product Evaluation/Validation
 - Initial validation and training was based on aircraft-based H*Wind (Powell et al. 1998) surface wind analyses
 - Current evaluation is based on an in-house aircraft-based surface wind analysis developed for the Joint Hurricane Testbed and final best track estimates or 34-, 50- and 64-kt winds.
- Validation show that the largest errors (~ 5 ms-1) are in the vicinity the radius of maximum winds. Elsewhere errors are typically less than 2 ms⁻¹

Recent example Hurricane Lane (next slide)

Hurricane Lane (small, compact, and intense)

- Implementation
 - Previous version running at NSOF (degraded)
 - This version is running experimentally at CIRA
 - Planned in late 2018.
 - ATCF fix files are already getting to NHC, CPHC and JTWC
 - NetCDF output should help with use on AWIPS-II, ATCF
- Will be run on NDE
- Help coming from ASSISTT

Identified Risk/Issues	Action/Mitigation
Transition to operations (NDE)	Working with ASSISTT personnel
Himawari access	Plans for moving to operations
Failure of ASCAT	None
Metop-C products replacing A	Plans for moving to operations

- Improvements
 - Incorporation of ASCAT from Metop-C
 - Possible use of SMAP and SMOS winds (experimental)
 - Improved estimation of radius of maximum winds from satellite (ongoing work)
 - Work to improve central pressure estimates in intense storms.
- Future Validation Plans
 - Continue to use aircraft-based data for inner core
 - SMAP and SMOS wind speeds and TROPICS non-linear balance winds as independent assessment of outer winds

- MTCSWA provides unique and important information regarding the real-time surface wind structure in global tropical cyclone
- The satellite-only-based information provides key information in regions where routine aircraft reconnaissance is not performed
- Surface wind structure estimates support NWP (e.g., Bender et al. 2017), wind probabilities, watch/warnings, and wave forecasts (various methods) and thus impact TC impacts and forecasts.

Path Forward:

- 1. Get these updates in operations
 - mitigate the GOES-16 and soon GOES-17 degradation
 - Improved known shortcomings of the legacy analyses.
- 2. Continue to improve the inputs and methodology as part of StAR base or other funding opportunities

Backup Slides

- Source (NESDIS & US Navy)
- All AMVs below 600 hPa (IR, Vis,WV)
- Each data point is compiled in a stormmotion relative framework valid at the analysis time
- Each are adjusted to 700 hPa as a function of pressure, azimuth and radius
- Provides environmental winds

Input 2: AMSU/ATMS Sounder-based winds

- Method of Bessho et al. (2006) that solves the non-linear balance equations on pressure surfaces
- Winds are compiled in a motion relative framework
- Winds are adjusted to 700 hPa
- By product of the Hurricane Intensity and Structure Algorithm (HISA)
- Statistical (NCEP) and MIRS (OSPO) based inputs
- Provides asymmetries r=200 400

- Source: OSPO MCADDE server
- Winds are compiled in a motion relative framework
- Winds are adjusted to 700 hPa, speed (Franklin et al. 2003), angles (Zhang and Uhlhorn 2012), bias (Chou et al. 2013)
- Provides environmental and near core winds, when available

Input 4: IR-based flight-level proxy winds

- Winds are based on the algorithm discussed in Knaff et al. (2015) that related intensity, motion and IR patterns to the flight level winds (wavenumbers 0-2)
- Winds are compiled in a motion relative framework
- Winds are adjusted to 700 hPa as a function of pressure, azimuth and radius
- Provides winds near the core and the radius of maximum winds

References used in this talk

Bessho, K., M. DeMaria, and J. A. Knaff, 2006: Tropical Cyclone Wind Retrievals from the Advanced Microwave Sounder Unit (AMSU): Application to Surface Wind Analysis. *J. of Applied Meteorology.* **45**(3), 399-415.

Chou, K.-H., C.-C. Wu, and S.-Z. Lin, 2013: Assessment of the ASCAT wind error characteristics by global dropwindsonde observations, *J. Geophys. Res. Atmos.*, **118**, 9011–9021, doi: 10.1002/jgrd.50724.

Franklin, J.L., M.L. Black, and K. Valde, 2003: GPS Dropwindsonde Wind Profiles in Hurricanes and Their Operational Implications. *Wea. Forecasting*, **18**, 32–44, https://doi.org/10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2

Knaff, J. A., S. P. Longmore, R. T. DeMaria, and D. A. Molenar, 2015: Improved Tropical-Cyclone Flight-Level Wind Estimates Using Routine Infrared Satellite Reconnaissance. *Journal of Applied Meteorology and Climatology*, **54(**2), 463-478. doi: http://dx.doi.org/10.1175/JAMC-D-14-0112.1.

Mueller, K. J., M. DeMaria, J. A. Knaff, J. P. Kossin, and T. H. Vonder Haar:, 2006: Objective Estimation of Tropical Cyclone Wind Structure from Infrared Satellite Data. *Wea Forecasting*, **21(**6), 990–1005.

Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. *Wind Engineer. and Indust. Aerodyn.* **77&78**, 53-64.

Thacker, W. C., 1988: Fitting models to inadequate data by enforcing spatial and temporal smoothness. *J. Geophys. Res.*, **93**(C9), 10655–10665, doi: 10.1029/JC093iC09p10655.

Zhang, J.A. and E.W. Uhlhorn, 2012: Hurricane Sea Surface Inflow Angle and an Observation-Based Parametric Model. *Mon. Wea. Rev.*, **140**, 3587–3605, https://doi.org/10.1175/MWR-D-11-00339.1

Product Outreach Importance/Benefits/Users

- In tropical cyclone regions without routine aircraft reconnaissance the surface wind estimates efficiently provide critical information about the surface wind structure associated with TCs.
 - Initial wind structure estimates influence watch/warning, TC conditions of readiness
 - Initial wind structure estimates are provided to NWP
 - Initial wind structure influence output of the wind speed probability product, which are inputs to watch/warning and significant wave height guidance
- No current funding for maintenance or future development (out of hide)

Name	Organization	Application	User Feedback
Mark Demaria	NHC	Wind Radii Estimation	Experimental and older operational versions fixes in ATCF Viewed on web-site
Brian Strahl	JTWC	Wind Radii Estimation	Older operational versions in fixes at JTWC Technical exchange occurring this week. Viewed on web-site

Product Outreach Documentation/website links

(Provide this information in your back-up slides)

- For experimental products <u>http://rammb.cira.colostate.edu/products/tc_realtime/</u>
- For legacy/operational product (degraded) <u>http://www.ssd.noaa.gov/PS/TROP/mtcswa.html</u>

- Blended Product Name: MTCSWA
- Output Data Type(s): Wind (netCDF), ATCF-fix (ASCII)

Output Product(s) Attributes	Threshold	Observed/validated
Latency	1h	35m
Geographic coverage	Global	Global
Vertical Coverage	N/A	N/A
Vertical Cell Size	N/A	N/A
Horizontal Cell Size	10 km	10 km
Mapping Uncertainty	50km	~20 km
Measurement Range	0-100 m/s	0-75 m/s
Measurement Accuracy	5 m/s	5 m/s
Measurement Precision	5 m/s	5 m/s
Measurement Uncertainty	5 m/s	5 m/s