Increased need for Arctic oil spill prevention and response

Coastal Response Research Center University of New Hampshire

Amy A. Merten NOAA's Office of Response and Restoration Coastal Response Research Center July 12, 2007 Impact of an Ice-Diminishing Arctic on Naval and Maritime Operations

Presentation Outline

- New threats for oil spills in the Arctic
- NOAA's preparation for understanding and responding to spills in the Arctic
- International Research Collaboration on oil spill response best practices and new research

 NOAA's research on the behavior, biodegradation and exposure potential of oil spills in Arctic Waters

New Threats for Oil Spills in the Arctic

- Increased Arctic Exploration/Exploitation Activity → Increased Spill Risk
- Longer access to the Arctic and Northern Routes Open to Shipping

Coastal Response Research Center

• Are we prepared?

NOAA's preparation for oil spills in the Arctic

- International Coordination & Planning
 - Defining State of the Art and Best Practices
- International Polar Year Collaborations

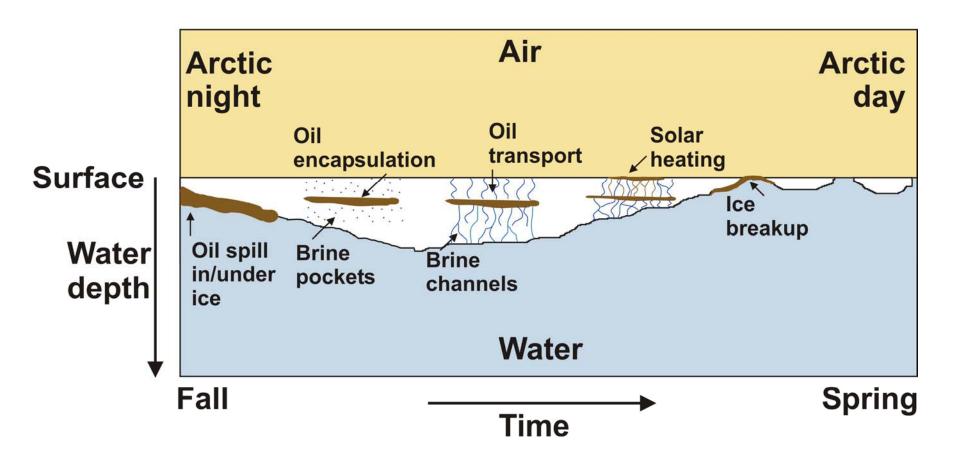
University

Overall Center Mission

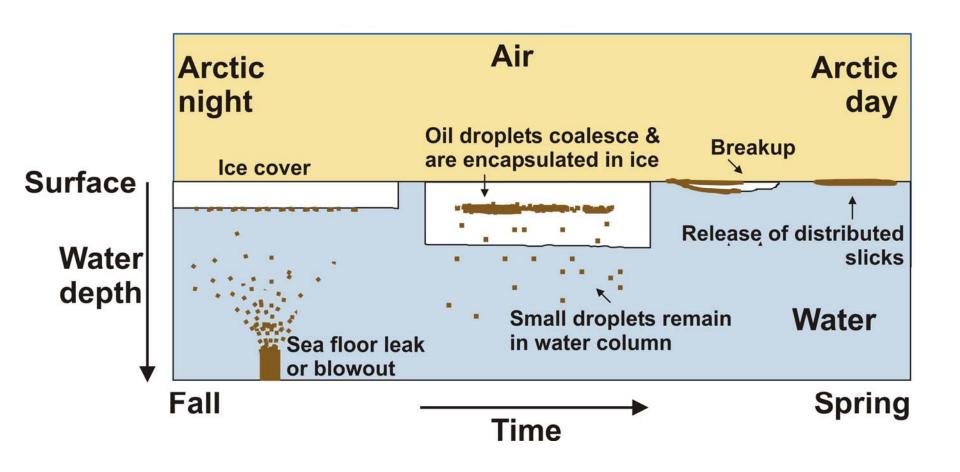
- Joint Partnership between NOAA's Office of Response and Restoration (ORR) and the University of New Hampshire
- Develop new approaches to spill response and restoration through research/synthesis of information
- Serve as a resource for ORR and NOAA
- Serve as a hub for spill research, development, and technical transfer
 - Oil spill community (national and international)

Specific Center Mission

- Conduct and oversee <u>basic</u> and <u>applied</u> research and outreach on spill response and restoration
- Transform research <u>results into standards of</u>
 <u>practice</u>
- Encourage strategic <u>partnerships</u> to achieve mission



University


Conduct <u>outreach</u> to improve preparedness and response

Seasonal Progression of Oil Frozen into Ice Field in Winter, and Released During Melting and Breakup in Spring

Oil May Enter the Ice from a Sub Sea Release or a Surface Release

Overall objective of Joint Industry Project Oil in Ice

Develop tools and technologies for environmental beneficial oil spill response strategies for ice-covered waters

The program will utilize existing Arctic and oil spill technology and the deliverables can directly be used in oil spill contingency plans for Arctic and ice covered areas.

Organisation

Steering Committee Oil Companies

- Agip KCO Mark Shepherd
- Chevron Norge AS, Gunnar H Lille
- Norske ConocoPhillips AS, Eimund Garpestad
- Shell Technology Norway A/S, Gina Ytteborg
- Statoil ASA , Hanne Greiff Johnsen
- Total E&P Norge, Ulf Einar Moltu
- Program coordinator; Stein E Sørstrøm, SINTEF

Cooperating Organisations

- NOFO, Hans V Jensen
- Alaska Clean Seas, Lee Majors
- Norw. Coastal Admin., Johan M. Ly
- MMS, Joe Mullins/Sharon Buffington
- OSRI, Scott Pegau
- CRRC/NOAA, Amy Merten

R&D Organisations

- SINTEF
- Dave Dickins Associates
- S L Ross
- +++++

Projects

- **1 Fate and behaviour,** Per J Brandvik
- **2 In-situ burning,** Ian Buist
- **3 Mechanical recovery**, Ivar Singsaas
- **4 Chemical dispersants,** Per Daling
- **5 Remote sensing,** Dave Dickens
- 9 Biological Effects, Amy Merten, NOAA
- **8 Field experiments,** Stein E Sørstrøm
- **6 Generic guideline,** Gina Ytteborg
- **7 Coordination,** Stein E Sørstrøm

Program

9 projects, 25 tasks, approximately US\$ 7 (8) mill, 3,5 years from September 2006

P1 Fate and behaviour

- Compile existing data
- Upgrade oil weathering model
- Meso scale experiments
- Field experiments on Svalbard
- Full scale experiment

P2 In situ burning

- Mapping of burnability as a result of weathering
- Field test of herding agents
- Test fire resistant booms
- Weathering and window of opportunity.

P3 Mechanical recovery

- Test existing concepts winterisation
- Develope new concepts

P4 Chemical dispersants

- Effectivness by use of dispersants
- Improve application technology

P5 Monitoring and remote sensing

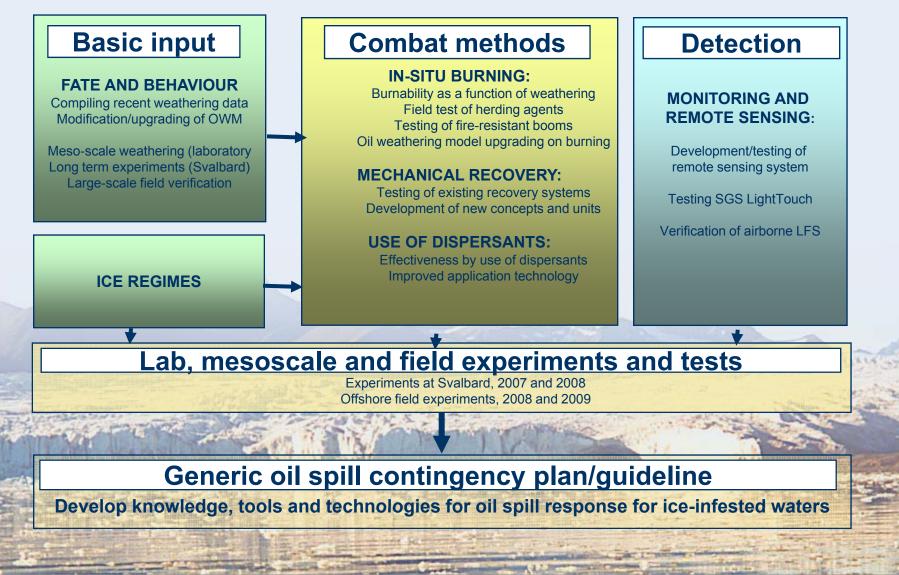
- Dev and test remote sensing systems
- Test Shell methane detection system
- Develop detection and tracking concept
- Field verification of Laser Fluorosensor system

P6 Generic Guide

- Describe a set of relevant (typical) ice regimes (scenarios)
- Generic plan (scenarios and a set of recepies?)

P7 Field experpiments

- Field experiments at Svalbard
- Offshore field experiments

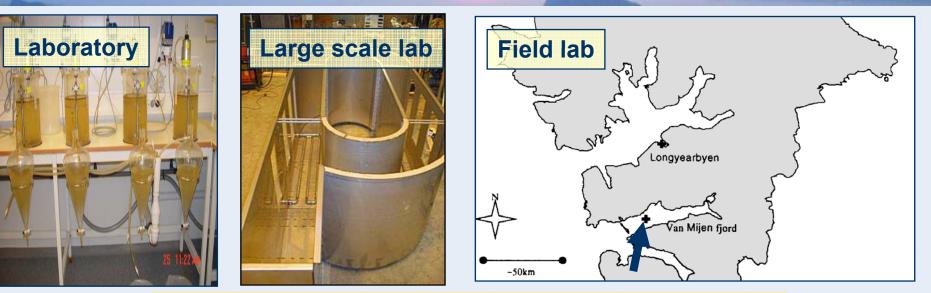

P8 JIP Coordination

- Coordination and managment
- Workshops and steering comittee meetings
- Communication and publishing

P9 Biological effects

- Oil-ice interaction vs biological effects
- Biological survey during field experiments
 - Birds, mammals

Coordination, Management and Communication



Time schedule

Pre-project		Lab/basin/field experiments and tests		Full scale field trial
2005	2006	2007	2008	2009

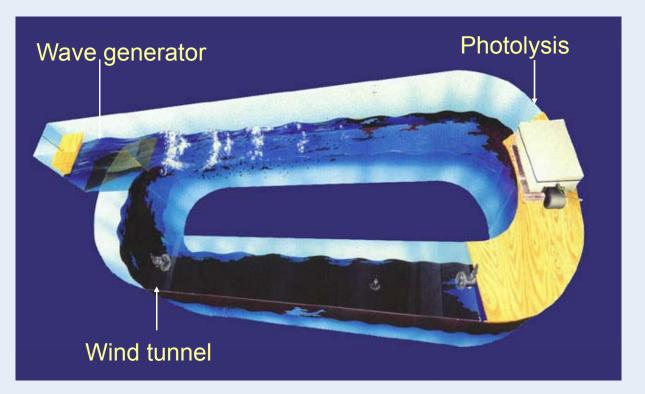
JIP Oil in ice

A chain of lab- and field experiments will establish the basis for making final recomendations

Laboratory tests

Large number of tests

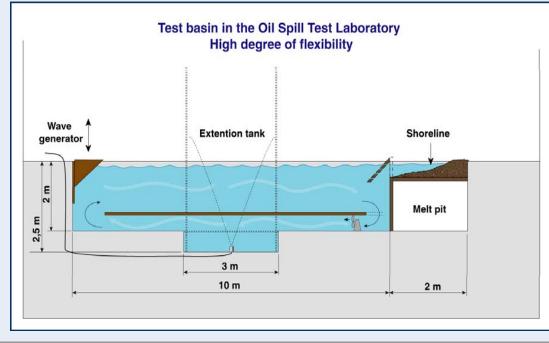
Screening


Establish basic weathering data

Related to effectiveness of different combat methods

13.

SINTEF lab-scale flume basin

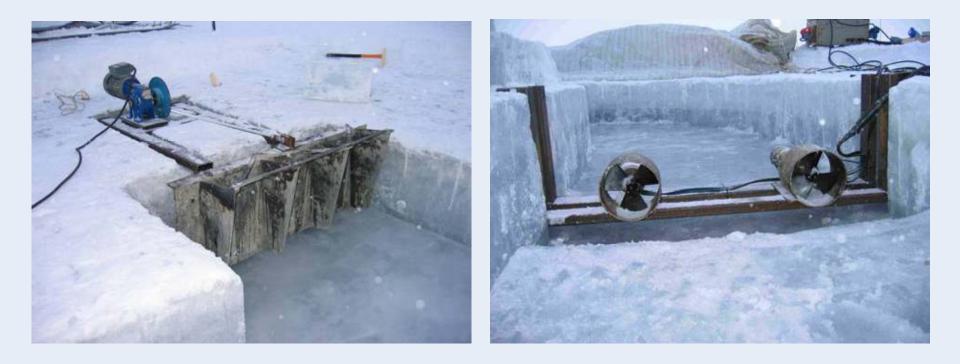


Large scale. Cold climate lab.

Waves Currents

Low temperature lce conditions

With / without oil


Fate and behavior of oil in ice

From lab to field conditions

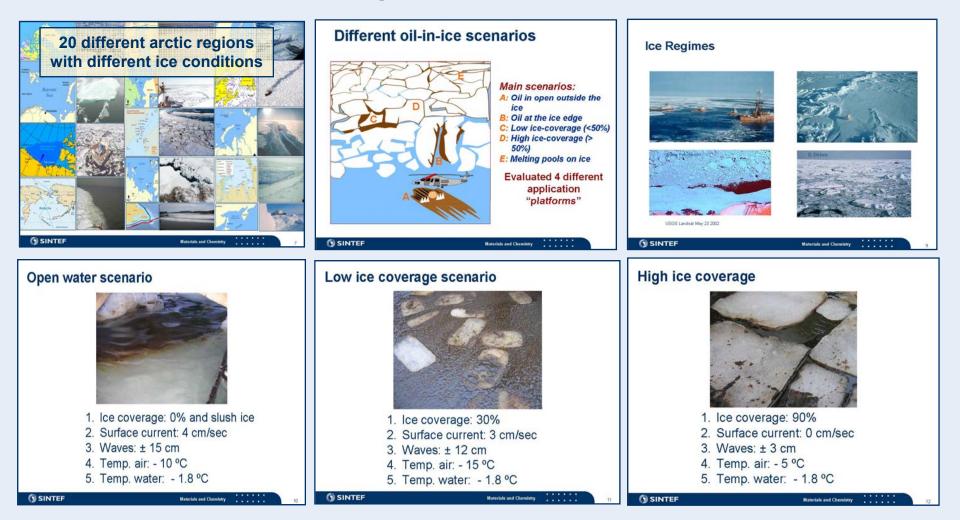
Meso-scale oil weathering experiments on Svalbard

Experimental weathering of oil in ice

Meso-scale oil weathering on Svalbard – Wave and Current generators

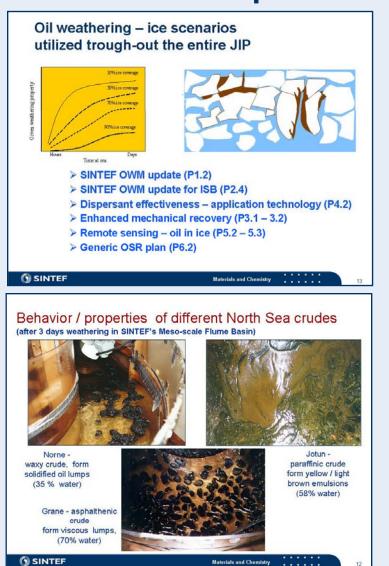
JIP Oil in ice

- As well as under ice

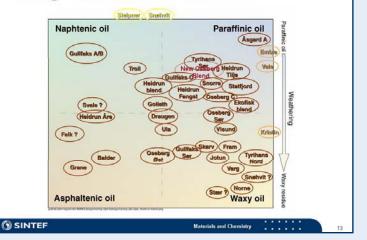


Divers used for inspection, thickness measurements and photos

Full scale field trials – Marginal Ice Zone (pictures from 1993)

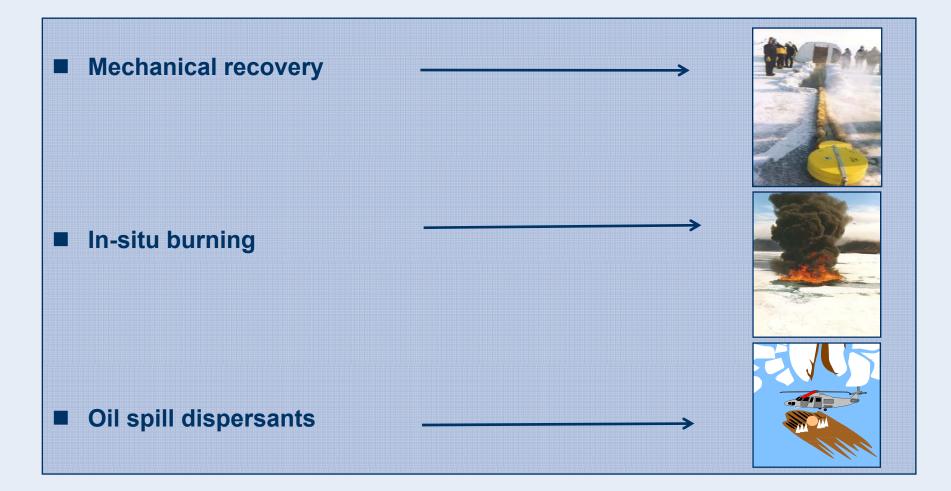


Basic input – ice conditions



Recreate these scenarios and apply them in further testing - as far as possible

Basic input – oil quality and weathering


Categorization of crude oils

Weathering of oil vs. ice coverage

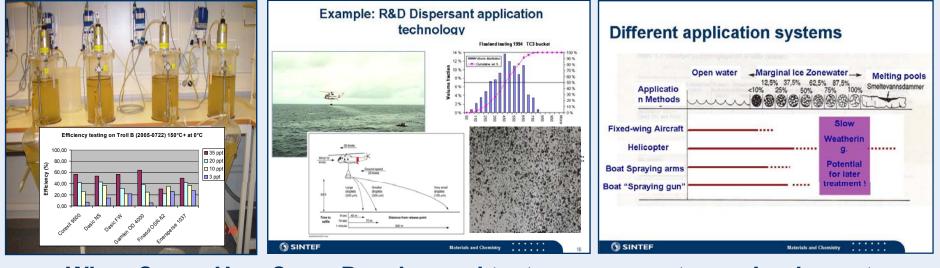
Methods for oil spill response.

JIP Oil in ice

Mechanical recovery

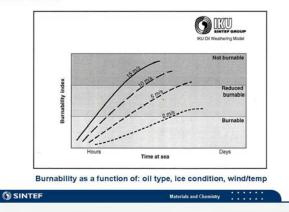
MIZ-Experiment, Barents Sea, 1993

It works, but is it good enough?


Lab – meso scale – full scale testing

In cooperation with suppliers of tech from Norway, Finland, Denmark

Dispersants


When? - How? - Develop and test new concepts - Implement

Burning of Arctic oil spills

Future goals: Predict time window for In-situ burning of oil-in-ice

In-situ burning in fire-proof booms

It works, when can we use it?

In-situ burning "removes" oil in ice with high effectiveness (rate and efficiency)

JIP Oil in ice

Weathering vs burning of oil spills

JIP Oil in ice

Pollution Surveillance Aircraft

German Federal Ministry of Transport Dornier 228-212

- Infrared/Ultraviolet Linescan (IR/UV-LS)
- Microwave Radiometer
- Imaging Laser Fluorosensor (IALFS)
- · Forward Looking Infrared (FLIR)

() SINTEF

Remote sensing

Radar Imagery - Oil Spills on Open Water

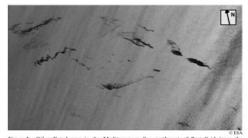


Figure 3: Oil polluted area in the Mediterranean Sea northwest of Port Said (near the entrance to the Suez Canal). Visible are several oil spills of different size and age which apparently originate from tanker cleanings. The analysis of a large number of ERS SAR images has revealed that this area is a "hot spot" for tanker cleaning. Alptra-University of timiburg

Materials and Chemistry

SINTEF

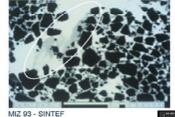
Shell Global LightTouch™ Ethane Sensor - Tuneable Diode Laser Spectrometer

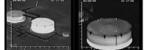
BOISE

 TDLS capable of measuring ethane concentrations down to 50 parts per trillion or better

Materials and Chemistry

 Sensitivity equivalent to a flux of 1 micron of gas per square km per hour over dist to 10 km




Materials and Chemistry

It's dark, it's ice covered Where is the oil?

Infrared Sensors

Arco Aviation 1995

Materials and Chemistry

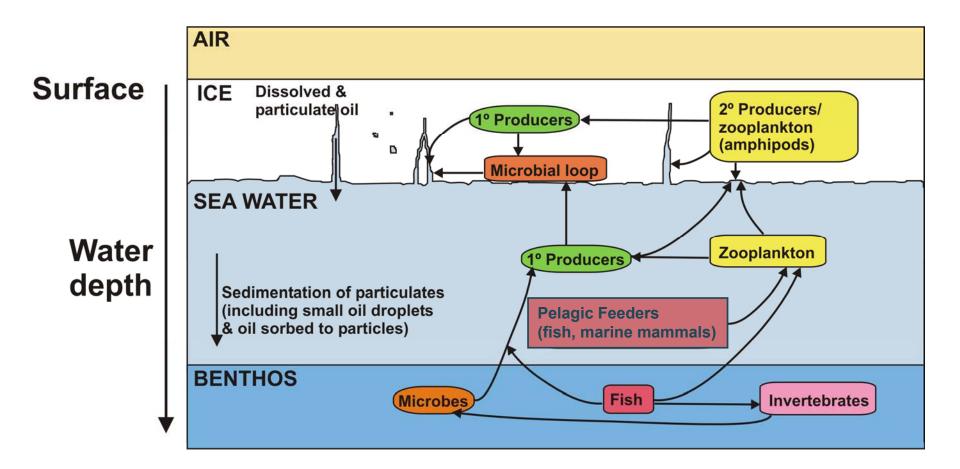
() SINTEF

Detection of oil under sea ice in Svea

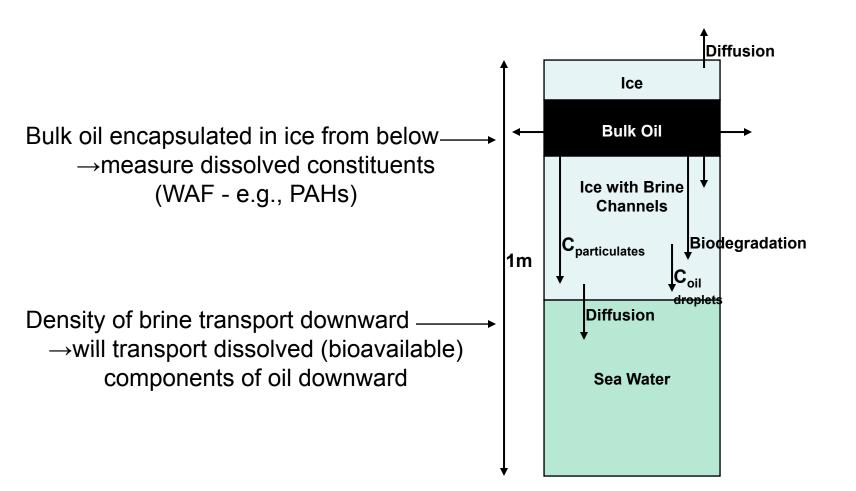
Testing radar (GPR, 500Mhz) to detect oil under ice by Boise State University

Plus New project;

Dogs for sniffing



Oil-in-Ice: Behavior, Biodegradation and Potential Exposure



Oil-in-Ice in the Barents Sea Marginal Ice Zone (1993)

Conceptual Model Food Web Cycle

Transport/Exposure

Oil-in-Ice: Behavior, Biodegradation and Potential Exposure

• NOAA/CRRC Focus:

- Identified gaps in understanding transport of oil <u>components</u> in sea ice
- Need improved understanding in order to define risks of exposure to biological communities associated with sea ice
- Focus of study: transport through ice during freezingthawing cycle

Historically, oil in ice research focused on bulk oil; limited studies on dissolved components (bioavailable & toxic form) except for Brandvik & Faksness, 2005 & Payne *et*. *al.*, 1991)

Oil-in-Ice: Behavior, Biodegradation and Potential Exposure

Questions We Want to Answer?

- What is the behavior of oil in ice?
- What are the transport & degradation (physical, chemical, and biological) processes and rates that govern the fate of oil frozen in ice?
- How does the change of the structure of the ice affect transport?
- What are the exposures (e.g., composition, concentrations, durations) to which ice-related organisms may be exposed?
- What are the potential effects of these exposures?
- How will response options affect transport/biodegradation processes and exposure pathways?

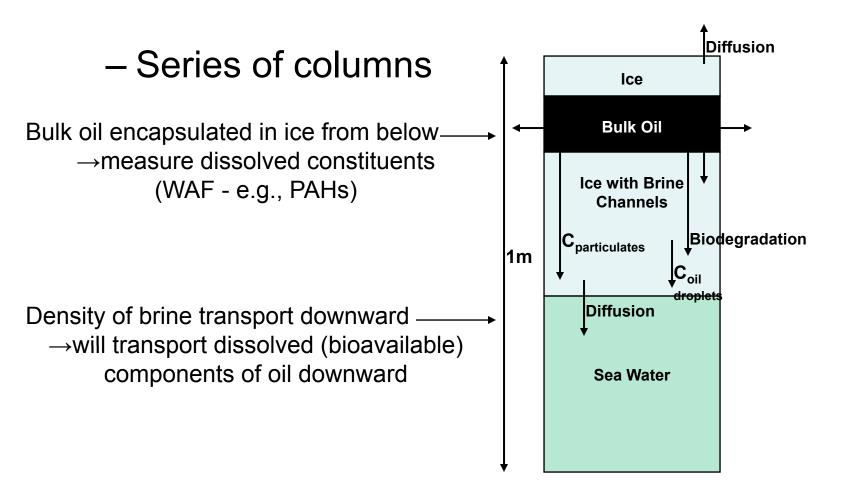
Coastal Response Research Center

University lew Harris

Oil-in-Ice: Behavior, Biodegradation and Potential Exposure

Focused on "Oil-in-Ice"

- 1) Transport/exposure
 - \rightarrow Brine rejection, cycling
 - \rightarrow Diffusion
- 2) Biodegradation
- 3) Modeling


Assumption: Once oil (dissolved, particulates, bulk droplets) leaves ice structure \rightarrow go to other models & databases (hydrodynamic, toxicity models, etc.)

Coastal Response Research Center

SINTEF

Transport/Exposure Lab Experiments

Transport/Exposure Lab Experiments (cont.)

- Focus on 1 oil Prudoe Bay or Goliath
- Quantify changes in concentrations across time through freezing & thawing cycles
- 3 Temps (-5°C, -10°C, -20°C), 3 reps each treatment
- Size of columns still in question
 - Volume for organic chemistry is constraining
 - Exploring semi-permeable micro extraction (SPME) techniques
 - Sample vertically
- Field experiment design (2009) will be based on lab findings

Biodegradation Experiments

- Assumption:
 - 1) Microbes need water to be active
 - 2) Most microbial activity in ice will occur in brine pockets/channels
- Focus: Heterotrophic bacteria because of their potential to degrade WAF
- Objective:
 - 1) Does bioremediation of WAF occur in brine pockets/channels?
 - 2) What are the biodegradation rates of WAF as a function of brine strength, temperature, light levels, particulate content in ice, and WAF concentration?

Coastal Response Research Center

3) What are the rates of WAF biodegradation relative to WAF transport out of ice?

University

Biological Effects of Oil-in-Ice JIP Project

• Biodegradation Experiments

- Batch factorial design studies in brine using indigenous microbes
 - 3 Temps (-5°C, -10°C, -20°C)
 - 2 Brine strengths
 - 2 Particulate concentrations
 - 2 Light levels
- Time series sampling of replicate flasks
- Analysis:
 - Light levels
 - Chemistry: salinity, WAF 25 components, terminal electron acceptors (TEA), TOC, SS, nutrients
 - Microbial Communities:
 - Epifluorescent counting: bacteria, protists, algae; hydrocarbon degraders, sulfate reducing bacteria
 - Molecular methods: DGGE, RT-PCR

SINTEF • Rates: ¹²C/¹³C and various naphthalene based ratios, change in concentrations vs. time

A Model of Oil Encapsulation & Release in First Year Ice

Model Attributes and Processes:

- 1- or 2-Dimensional (Vertical-Horizontal)
 - 1-D is simpler
 - 2-D will allow uneven distribution of oil under and in ice
- Focus on Microscale (mm) to Mesoscale (~1 m) Processes
- Time-Dependent: Will Simulate Annual Freezing-Thawing Cycle
- Ice State Variables:
 - Porosity/permeability (not the same; the latter is a function of the connectivity of the porosity)

Coastal Response Research Center

- Thickness
- Temperature gradient (vertical)
- Salinity

University of

Model Attributes and Processes (continued):

- Radiative Heat Transfer (Insolation)
 - Changes due to presence of oil
 - May require experimental data
- Vertical Transport in Brine Channels
 - Snow load induces transport upwards
 - Ice accretion induces transport downwards
- Oil Representation as Multiple Components
 - More accurate calculation of evaporation, biodegradation, dissolution, toxicity

Coastal Response Research Center

- Produces Time Series of Exposures at the Ice-Water Interface
- Oil May Enter Ice as Surface or Subsurface Release
- Boundary Conditions:

SINTEF

- Oil entering and leaving ice
- Water and air temperatures, insolation, snowfall

Conclusions

- Active Involvement in International R&D and operational efforts for preparing for spills in Arctic waters
- Opportunities for increased collaborations at the field-scale assessment level
- Building a foundation for Risk Assessment of Spills in Arctic environments
 - New Model for Coastal Response Research Center
 - \$300 K to support International Collaboration
 - Leveraging UNH and UNIS student/post-doc capabilities

SINTEF

Need for comprehensive, environmental sensitivity mapping and monitoring strategy for prioritizing efforts in the Arctic Need to focus on societal consequences of increased spill risks in the Arctic

Acknowledgments

- Dr. Nancy Kinner (University of New Hampshire)
- Dr. Stein Erik Sørstrøm (SINTEF Norway, Lead for Joint Industry Project)
- Dr. Mark Reed (SINTEF)
- Dr. Odd Gunnar Brakstad (SINTEF)
- Dr. Scott Pegau (Oil Spill Recovery Institute, Cordova, AK)

- Whitney Blanchard (UNH Ph.D. Student, Fulbright Scholar)
- Dr. John Whitney (NOAA Scientific Support Coordinator, Alaska Region)