NUCAPS External Users Manual

Environmental Satellite Processing Center (ESPC)

NOAA Unique Combined Atmospheric Product System (NUCAPS) External Users Manual (EUM)

Version 5.0, April 13, 2017

Version 1.0 prepared by: Thomas S. King (IMSG), Chen Zhang (Dell)

Version 2.0 Modified by: Letitia Soulliard and Thomas King (IMSG)

Version 3.0 Updated by: Awdesh Sharma, NOAA/NESDIS, Oleg

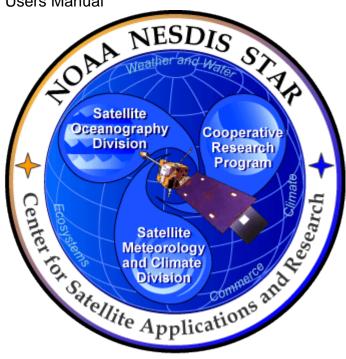
Roytburd, SGT

Version 4.0 and 5.0 Letitia Soulliard and Thomas King (IMSG)

For the: U.S. Department of Commerce

National Oceanic and Atmospheric Administration (NOAA)

National Environmental Satellite, Data, and Information Service (NESDIS)


Office of Satellite Products and Operations (OSPO) Environmental Satellite Processing Center (ESPC)

NOAA/NESDIS/STAR/OSPO OSPO/ESPC-ATMO-SONU07-01-V5.0 ESPC-RIBK-13-090024

Baseline Date: April 13, 2017

NUCAPS External Users Manual

NOAA NESDIS
CENTER for SATELLITE APPLICATIONS and RESEARCH

The NOAA Unique Combined Atmospheric Product System External Users Manual

OSPO/ESPC-

ESPC-RIBK-13-090024 Baseline Date: April 13, 2017

External Users Manual

NUCAPS

Approval Page

Environmental Satellite Processing Center (ESPC)

The NOAA Unique Combined Atmospheric Product System External Users Manual (EUM)

Version 5.0, April 2017 WR000224

PROGRAM: Atmosphere		DOCUMENT RELEASE DATE: April 2017		
	APPF	ROVALS		
GROUP: ESPC	Date	GROUP: ESPC	Date	
NAME: A K Okamaa Daaamaa Anaa		NAME OF B. (I I B		
NAME: A.K. Sharma, Program Area Lead		NAME: Oleg Roytburd,	Programmer	
GROUP: ESPC	Date	GROUP: ESPC	Date	
GROOF: 2010	Date	GROOF. LOFG	Date	
NAME: Lindsley Bodden, Contract				
Manager				

Baseline Date: April 13, 2017

NUCAPS

External Users Manual

Document History

The Document History identifies the document origination and the series of revisions to the document that may occur at any point after the baseline release. This page will become a

permanent part of this document.

permanent	part of this docume	/I I (.		
Version Number	Date	Description of Change/Revision	Section/Pages Affected	Changes Made by Name/Title/ Organization
1.0	12/1/2011	Origination; Document was released for Phase 1 SDR products.	All	Chen Zhang (Dell) Thomas S King (IMSG) Letitia Soulliard (IMSG)
2.0	10/01/2012	The entire document was revised for Phase 2 EDR products	All	Letitia Soulliard and Thomas King
3.0	05/29/2014	Modified by A.K. Sharma		
3.0	06/12/2014	Technical Edit	WR000224	Janice Olfus- Carter, ETDT/SSAI
3.0	6/12/2014	Quality Assessment by Marilyn Gross	WR000224	Marilyn Gross, ETDT/SGT
3.0	6/17/2014	Minor Edits	1.1.3	A.K. Sharma
4.0	6/8/2015	Updated for Phase 3	All	Letitia Soulliard and Thomas King
4.1	9/10/2015	Updated for Phase 3	All	Thomas King
5.0	4/13/2017	Updated for Phase 4	All	Thomas King and Letitia Soulliard

Baseline Date: April 13, 2017

External Users Manual

NUCAPS

TABLE OF CONTENTS

<u> </u>	<u>Page</u>
LIST OF TABLES AND FIGURES	vi
1. PRODUCTS	3
1.1. Product Overview	3
1.1.1. Product Requirements	3
1.1.2. Product Team	3
1.1.3. Product Description	5
1.2. Product History	6
1.3. Product Access	6
2. ALGORITHM	20
2.1. Algorithm Overview	20
2.2. Input Satellite Data	20
2.2.1. Satellite Instruments	20
2.2.2. Pre-Processing Steps	21
2.3. Input Ancillary Data	23
2.3.1. Digital Elevation Model	23
2.3.2. Retrieval System Files	24
2.3.3. GFS Forecast Files	27
2.3.4. Eigenvector Files	28
2.3.5. OLR Boxcar files	28
2.3.6. VIIRS collocation LUT Files	29
2.3.7. Template Files	29
3. PERFORMANCE	31
3.1. Product Testing	31
3.1.1. Test Data	31
3.1.2. Test Plans	31
3.2. Product Accuracy	31
3.2.1. Test Results	31
3.2.2. Product Accuracy	31

Page

ESPC-RIBK-13-090024 Baseline Date: April 13, 2017

•	NUCAPS
External Users Manual	
3.3. Product Quality	31
3.4. Analysis Tools	33
4. PRODUCT STATUS	34
4.1. Operations Documentation	34
4.2. Maintenance History	34

LIST OF TABLES AND FIGURES

<u>-</u>	ugo
Table 1-1 Product Team Members3	3
Figure 1-1 NDE Data Access Process7	,
Table 1-2 NUCAPS Output Files8	}
Table 1-3 NUCAPS EDR File9)
Table 1-4 NUCAPS CCR Archive File1	4
Table 1-5 NUCAPS OLR File1	5
Table 1-6 NUCAPS EDR 0.5X2 Global Grids File1	6
Table 1-7 NUCAPS OLR 0.5X2 Global Grids File1	9
Table 2-1 Retrieval System Files2	24
Table 2-2 NUCAPS CDL Files	30

OSPO/ESPC-

ESPC-RIBK-13-090024

Baseline Date: April 13, 2017

External Users Manual

NUCAPS

LIST OF ACRONYMS

AMSU-A	Advanced Microwave Sounder Unit - A
ASCII	American Standard Code for Information Interchange
ATBD	Algorithm Theoretical Basis Document
ATMS	Advanced Technology Microwave Sounder
BUFR	Binary Universal Form for the Representation of meteorological
	data
CCR	Cloud-Cleared Radiances
CDL	Common Data Language
CDR	Critical Design Review
CLASS	Comprehensive Large Array-data Stewardship System
CPU	Central Processing Unit
CrIS	Cross-track Infrared Sounder
DAP	Delivered Algorithm Package
DEM	Digital Elevation Model
DDS	Data Distribution Server
DHS	Data Handling System
DOD	Department of Defense
EDR	Environmental Data Record
EPL	Enterprise Product Lifecycle
ESPC	Environmental Satellite Processing Center
EUMETSAT	European Organization for the Exploitation Meteorological
	Satellites
FOR	Field Of Regard
FOV	Field of View
GB	Gigabyte
GFS	Global Forecast System
GMAO	Global Modeling and Assimilation Office
GMT	Greenwich Mean Time
GRIB	Gridded Binary format
IASI	Infrared Atmospheric Sounding Interferometer
ICD	Interface Control Document
IDPS	Interface Data Processing Segment
IP	Intermediate Product
IPD	NOAA's Internal Processing Division
IPT	Integrated Product Team
NDE	NPOESS Data Exploitation
NGDC	National Geophysical Data Center
NCDC	National Climate Data Center
NCEP	National Center for Environmental Prediction

ATMO-SONU07-01-V5.0 ESPC-RIBK-13-090024

Baseline Date: April 13, 2017

NUCAPS

NESDIS	National Environmental Satellite, Data, and Information Service
netCDF4	network Common Data Format version 4
NOAA	National Oceanic and Atmospheric Administration
NPOESS	National Polar-orbiting Operational Environmental Satellite
	System
NRL	Naval Research Lab
NSOF	NOAA Satellite Operations Facility
NUCAPS	NOAA Unique Combined Atmospheric Product System
NWP	Numerical Weather Prediction
OLR	Outgoing Longwave Radiances
OSPO	Office of Satellite & Product Operations
PBR	Project Baseline Report
PCF	Process Control File
PCS	Principal Components
PDA	Product Distribution and Access
PGAI	Product Generation Application Interface
PGM	Product Generation Manager
PSF	Process Status File
RAD	Requirements Allocation Document
RR	Reconstructed Radiances
RSE	Remote Sensing Extension
SADIE	Science Algorithm Development and Integration Environment
SAN	Storage Area Network
SDR	Sensor Data Record
SFS	Shared File System
SMCD	Satellite Meteorology and Climate Division
SPSRB	Satellite Products and Services Review Board
STAR	Center for Satellite Applications and Research
SWA	Software Architecture Document
VIIRS	Visible Infrared Imager Radiometer Suite
VVP	Verification and Validation Plan
WMO	World Meteorological Organization
XML	eXtensible Markup Language

DAA/NESDIS/STAR/OSPO OSPO/ESPC-

Baseline Date: April 13, 2017

NUCAPS

External Users Manual

1. PRODUCTS

This is an external user's manual document describing the NOAA Unique Combined Atmospheric Product System (NUCAPS) products and output files. The NUCAPS was developed at the Center for Satellite Applications and Research (STAR). It has been delivered to the NPOESS Data Exploitation (NDE) team and integrated into the NDE Data Handling System (DHS) where it is run in operationally.

The intended users of the External Users Manual (EUM) are end users of the output products and files, and the product verification and validation (V&V) teams. The purpose of the EUM is to provide product users with information that will enable them to acquire the product, understand its features, and use the data. External users are defined as those users who do not have direct access to the processing system (those outside of the NESDIS). The output files are defined as those leaving the NDE system. NUCAPS does output some files for tailoring into BUFR within NDE. Those tailored files are described in a separate EUM.

1.1. Product Overview

1.1.1. Product Requirements

All NUCAPS basic and derived requirements are available in the NUCAPS Requirements Allocation Document (RAD). These requirements identify the users and their needs with respect to file content, format, latency, and quality.

1.1.2. Product Team

The NUCAPS Development product team consists of members from STAR and OSPO. The roles and contact information for the different product team members are identified in Table 1-1.

Table 1-1 Product Team Members

Team	Organization	Role	Contact Information
Member			
Walter Wolf	STAR	STAR Product	5830 University Research Court
		Lead	College Park, MD. 20740
			Phone: 301-683-1314
			Email: Walter.Wolf@noaa.gov

Version 5.0 April 2017 ATMO-SONU07-01-V5.0 ESPC-RIBK-13-090024

Baseline Date: April 13, 2017

NUCAPS

Quanhua Liu	STAR	STAR Algorithm	5830 University Research Court
Q 4444 = 14	017.11.1	Lead	College Park, MD. 20740
			Phone: 301-683-3661
			Email: Quanhua.Liu@noaa.gov
Changyi Tan	STAR	Retrieval Scientist	5830 University Research Court
3,			College Park, MD. 20740
			Phone: 301-683-3541
			Email: Changyi.Tan@noaa.gov
Thomas King	STAR	Development	5830 University Research Court
		Lead	College Park, MD. 20740
			Phone: 301-683-3547
			Email: Thomas.S.King@noaa.gov
Kexin Zhang	STAR	Quality	5830 University Research Court
		Assurance Lead	College Park, MD. 20740
			Phone: 301-683-3544
			Email: Kexin.Zhang@noaa.gov
Chris Barnet	STC	Retrieval Scientist	10015 Old Columbia Road E-250
			Columbia, MD 21046
			Phone: 410-309-0818
			Email: Barnet@stcnet.com
Antonia	STC	Retrieval Scientist	10015 Old Columbia Road E-250
Gambacorta			Columbia, MD 21046
			Phone: 410-309-0818
			Email:
			Antonia.Gambacorta@stcnet.com
Awdesh	OSPO	Product Area	5830 University Research Court
Sharma		Lead (PAL)	College Park, MD. 20740
		, ,	Phone: 301-683-3229Email:
			Awdhesh.Sharma@noaa.gov
Peter Keehn	STAR	Developer	5830 University Research Court
			College Park, MD. 20740
			Phone: 301-683-3548
			Email: Peter.Keehn@noaa.gov
Letitia	STAR	Developer	5830 University Research Court
Soulliard			College Park, MD. 20740
			Phone: 301-683-3538
			Email: Letitia.Soulliard@noaa.gov
Larisa Koval	STAR	Requirements	5830 University Research Court
		Developer	College Park, MD. 20740
			Phone: 301-683-3542
			Email: Larisa.Koval@noaa.gov

NUCAPS

External Users Manual

Yunhui Zhao	STAR	Configuration	5830 University Research Court	
	Mana		College Park, MD. 20740	
			Phone: 301-683-3543	
			Email: Yunhui.Zhao@noaa.gov	
	OSPO	Primary	5830 University Research Court	
Oleg		Maintenance	College Park, MD. 20740	
Roytburd		Programmer	Phone: 301-683-3283	
		1 Togrammer	Email: oleg.roytburd@noaa.gov	
	OSPO	Secondary	5830 University Research Court.	
Robert		Maintenance	College Park, Maryland 20737	
Lindsay		Programmer	Phone: 301-683-3281	
		1 rogiammer	Email: robert.lindsay@noaa.gov	
	OSPO		5830 University Research Court	
William P. O'Connor		Secondary	College Park Maryland 20740	
		Maintenance	Phone: 301-683-3280	
o cominor		Programmer	FAX: 301-683-3297	
	_		Email: william.oconnor@noaa.gov	
	STAR		NSOF	
Tony Reale		STAR Scientist	4231 Suitland Rd	
Tony Roals			Suitland MD 20746	
			Email: tony.reale@noaa.gov	
	OSPO		NSOF 1372	
Donna			4231 Suitland Rd	
McNamara		Data Distribution	Suitland MD 20746	
			Phone: (301)817-3803	
			Email; donna.mcnamara@noaa.gov	

1.1.3. Product Description

The NOAA Unique Combined Atmospheric Product System (NUCAPS) was developed to generate (1) spectrally thinned radiances, (2) retrieved products such as profiles of temperature, moisture, trace gases and cloud-cleared radiances, (3) outgoing longwave radiation, and (4) globally gridded validation products. The thinned radiance products are not external outputs of NDE. After they are produced in NUCAPS, they are tailored into BUFR by the Reformatter Toolkit (N4RT) system that also runs within NDE. Therefore, the only external outputs are the retrieved and the validation products. Details on the content of all NUCAPS external output files are shown in section 1.3.

OSPO/ESPC-

Baseline Date: April 13, 2017

NUCAPS

External Users Manual **1.2. Product History**

NUCAPS was made operational in several phases. Phase 1 went operational in April 2012 with thinned radiances, principal components, and SDR validation products. Phase 2 went operational in October 2013 adding temperature, moisture, and trace gases profiles along with global EDR validation products (grids). Phase 3 was made operational in October 2015. It included VIIRS/CrIS collocation to include VIIRS cloud products for the CrIS SDR BUFR, updates and bug fixes to the preprocessor and retrieval codes, ILS correction, and a port from IBM to Linux GNU compilers. Phase 4 implemented the use of CrIS full spectrum data and JPSS Enterprise cloud products.

1.3. Product Access

All NUCAPS output data files are made available by NDE on the Product Distribution and Access (PDA) server. For access to this server, information about data files, and associated documentation, the NUCAPS PAL should be contacted (see Table 1-1).

The NESDIS' Policy on Access and Distribution of Environmental Data and Products is provided at: http://www.ospo.noaa.gov/Organization/About/access.html.

Users need to fill out the Data Access Request Form located on this site and submit to the PAL with a copy to nesdis.data.access@noaa.gov. This address provides the OSPO Data Access Team a copy of the correspondence. The process is defined in the following diagram. Once the request is approved by the OSPO management the data will be delivered by the Data Distribution System (DDSProd) currently distributing the ESPC data products and later by the Product Distribution and Access (PDA) system. The ESPC Data Distribution Manager, Donna McNamara (donna.mcnamara@noaa.gov) should be contacted for any data accessibility and data distribution problems.

Baseline Date: April 13, 2017

NUCAPS

External Users Manual

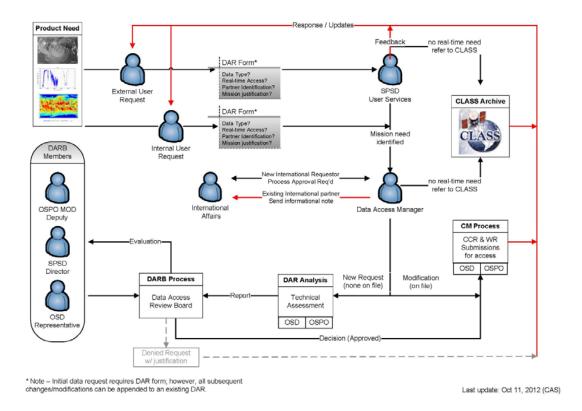


Figure 1-1 NDE Data Access Process

In order to obtain the near real time data, the user needs to fill out the Data Access Request Form located on http://www.ospo.noaa.gov/Organization/About/access.html and submit it to the PAL with a copy to neadis.data.access@noaa.gov. CLASS archives the NUCAPS Environmental Data Record (EDR) retrieval product, the Cloud-Cleared Radiance (CCR) product, and the Outgoing Longwave Radiation (OLR) product for the non-real time users. These files are CF-compliant netCDF4 files containing metadata. PDA pushes the data to CLASS.

Table 1-2 lists all NUCAPS files distributed outside of the NDE system to external users. The BUFR and AWIPS files are not produced inside the NUCAPS software, but are produced elsewhere downstream within the NDE system. Each global grid includes two binary data files, which are ascending orbital data file (ASC) and descending orbital data file (DSC). Table 1-3 ~ Table 1-6 shows the detailed content of each output files listed in Table 1-2.

Version 5.0 April 2017

NUCAPS

Table 1-2 NUCAPS Output Files

File	Description	Format	Size/file
NUCAPS-	This is the granule output	netCDF4	3.1 MB/file
EDR_v2r0_npp_s????????????	file containing all the		2700
e?????????????_c????????????	retrieval (profile) products.		files/day
??.nc			
NUCAPS-CCR-	This is the granule output	netCDF4	1.3 MB/file
AR_v2r0_npp_s????????????_e	file containing cloud-		2700
?????????????_c??????????????	cleared radiance product		files/day
?.nc	data.		
NUCAPS-	This is the granule output	netCDF4	0.063
OLR_v2r0_npp_s?????????????	file containing the		MB/file
e??????????????_c?????????????	outgoing longwave		2700
???.nc	radiance product data.		files/day
NUCAPS-GG-EDR-GRIDS-	CrIS/ATMS retrievals on a	Gridded	726 MB/file
?SC_v2r0_npp_s?????????????	daily global grid at 0.5X2	direct-	2 files/day
e??????????????_c?????????????	degree resolution.	access	
??.bin		binary	
NUCAPS-GG-OLR-GRIDS-	Outgoing Longwave	Gridded	2.9 MB/file
?SC_v2r0_npp_s???????????_e	Range CrIS radiances on	direct-	2 files/day
?????????????_c???????????????	a daily global grid at	access	
.bin		binary	
NUCAPS-PCS-	This is the PCS statistics	Text file	0.0015
MONITORING_v2r0_npp_s???????	monitoring file. This is to		MB/file
???????_e??????????????.c????	be distributed for SDR		2700
?????????.txt	monitoring at OSPO.		files/day
NUCAPS-EDR-MONITORING_	This is the retrieval	Text file	0.078
v2r0_npp_s????????????_e???	monitoring output file.		MB/file
???????????.tx			2700
t	NUISA DO EDD (AVVIIS	1005	files/day
NUCAPS_EDR_IUTN06_KNES_npp	NUCAPS EDR for AWIPS	netCDF4	0.215
_\$.nc.wmo	for 9 sectors		MB/file
			1648
AU IOA DO	The section 4 O 10 404	DUED	files/day
NUCAPS-	The output CrIS 431-	BUFR	1.0 MB/file
C0431_v2r0_npp_s????????????	channel full spatial		2700
?_e?????????????_c??????????	resolution BUFR file		files/day
?????.bufr	converted from NUCAPS		
Varaian F O	netCDF4.	0	

Baseline Date: April 13, 2017

External Users Manual

NUCAPS

NUCAPS-	The output CrIS 2211-	BUFR	4.8 MB/file	
C2211_v2r0_npp_s?????????????	channel full spatial		2700	
?_e?????????????_c??????????	resolution BUFR file		files/day	
?????.bufr	converted from NUCAPS			
	netCDF4.			

Table 1-3 NUCAPS EDR File

Variable	Type	Description	Dim	Units	Range
CrIS_FORs	Long	CrIS Fields of Regard per granule	120	None	1 to 120
Time	Doub le	UTC Milliseconds since Jan 1, 1970	120	Milliseco nds	95000000000 0 to 25000000000 00
Latitude	Float	Latitude of the center of the FOR	120	Degrees	-90 to 90
Longitude	Float	Longitude of the center of the FOR	120	Degrees	-180 to 180
View_Angle	Float	Viewing angle of the sensor from the satellite	120	Degrees	-60 to 60
Satellite_Hei ght	Float	Satellite height above the FOR	120	km	800 to 900
Mean_CO2	Float	Column averaged CO2 of the FOR	120	ppm	0 to 1000
Solar_Zenith	Float	Solar zenith angle	120	Degrees	0 to 180
Ascending_ Descending	Short	Orbital status	120	None	0 to 1
Topography	Float	Surface height	120	Meters	0 to 10000
Land_Fracti on	Float	Land fraction	120	None	0 to 1
Surface_Pre ssure	Float	Surface air pressure	120	mb	0 to 10000
Skin_Tempe rature	Float	Surface temperature	120	Kelvin	0 to 1000
MIT_Skin_T emperature	Float	Surface temperature from MIT retrieval	120	Kelvin	0 to 1000

ATMO-SONU07-01-V5.0 ESPC-RIBK-13-090024

Baseline Date: April 13, 2017

NUCAPS

External Osers	Mariua				
FG_Skin_Te	Float	Surface	120	Kelvin	0 to 1000
mperature		temperature from			
		the first guess			
MW_Surfac	Short	Microwave	120	None	0 to 10
e_Class		surface class			
MW_Surfac	Float	Microwave	120	None	0 to 1
e_Emis	1 100.0	surface emissivity	0		
N_Smw_Per	Long	Number of MW	120	None	1 to 16
FOV		spectral points	0	110110	. 10 10
nemis_Per_	Long	Number of surface	120	None	1 to 100
FOV	Long	emis hinge points	120	110110	1 10 100
ncemis_Per	Long	Number of cloud	120	None	1 to 100
FOV	Long	emis hinge points	120	None	1 10 100
ncld_Per_F	Long	Number of cloud	120	None	1 to 8
OV	Long	layers	120	INOTIC	1 10 0
Quality_Flag	Long	Quality flags for	120	None	0 to 31
Quality_i lag	Long	retrieval	120	INOTIE	0 10 31
Japana Field	Long		129X12	None	NI/A coo
Ispare_Field	Long	Ispare diagnostics		none	N/A, see NUCAPS
		array from	0		SMM
Deneve Fiel	Пос	retrieval	258X12	None	
Rspare_Fiel	Float	Rspare		none	N/A, see
d		diagnostics array	0		NUCAPS
	- 1(from retrieval	0)/400	1	SMM
Cloud_Top_	Float	Cloud top air	8X120	mb	0 to 10000
Pressure	— 1	pressure	0)//00		0.1.1
Cloud_Top_	Float	Cloud top	8X120	None	0 to 1
Fraction		fractional			
_		coverage		-	
Pressure	Float	Air pressure	100X12	mb	0 to 2000
			0		
Effective_Pr	Float	Effective Air	100X12	mb	0 to 2000
essure		pressure	0		
Temperature	Float	Air temperature	100X12	Kelvin	0 to 1000
			0		
MIT_Temper	Float	Air temperature	100X12	Kelvin	0 to 1000
ature		from MIT retrieval	0		
FG_Temper	Float	Air temperature	100X12	Kelvin	0 to 1000
ature		from the first	0		
		guess			
H2O	Float	Water vapor layer	100X12	molecul	0 to
		column density	0	es/cm2	100000000
-			•	•	

Baseline Date: April 13, 2017

NUCAPS

External Users	wanua				
MIT_H2O	Float	Water vapor layer	100X12	molecul	0 to
		column density	0	es/cm2	100000000
		from MIT retrieval			
FG_H2O	Float	Water vapor layer	100X12	molecul	0 to
		column density	0	es/cm2	100000000
		from the first		00/01112	10000000
		guess			
H2O_MR	Float	Water vapor	100X12	g/g	0 to
1120_IVIIX	1 loat	mixing ratio	0	9/9	100000000
MIT_H2O_M	Float		100X12	a/a	
	Float	Water vapor		g/g	0 to
R		mixing ratio from	0		100000000
		MIT retrieval	4001/40	,	•
FG_H2O_M	Float	Water vapor	100X12	g/g	0 to
R		mixing ratio from	0		100000000
		the first guess			
O3	Float	Ozone layer	100X12	molecul	0 to
		column density	0	es/cm2	100000000
FG_O3	Float	Ozone layer	100X12	molecul	0 to
		column density	0	es/cm2	100000000
		from first guess			
O3_MR	Float	Ozone mixing	100X12	ppb	0 to
_		ratio	0		100000000
FG_O3_MR	Float	Ozone mixing	100X12	ppb	0 to
		ratio from first	0	100	10000000
		guess			
Liquid_H2O	Float	Liquid water layer	100X12	molecul	0 to
Liquid_i i20	1 loat	column density	0	es/cm2	100000000
Liquid_H2O	Float	Liquid water	100X12		0 to
MR	rivat	mixing ratio	0	g/g	100000000
_	Chart		100X12	None	0 to 1
Ice_Liquid_F	Short	Ice liquid flag		none	0 10 1
lag	Ele -4	Cambana na ana ana ani ali	0	ma a la avid	0.45
CO	Float	Carbon monoxide			0 to
		layer column	0	es/cm2	100000000
		density			
CO_MR	Float	Carbon monoxide	100X12	ppb	0 to
		mixing ratio	0		100000000
CH4	Float	Methane layer	100X12	molecul	0 to
		column density	0	es/cm2	100000000
CH4_MR	Float	Methane mixing	100X12	ppb	0 to
		ratio	0		100000000

NOAA/NESDIS/STAR/OSPO ATMO-SONU07-01-V5.0 ESPC-RIBK-13-090024 Baseline Date: April 13, 2017

NUCAPS

External Users					
CO2	Float	Carbon dioxide	100X12	ppm	0 to 1000
		dry mixing ratio	0		
HNO3	Float	Nitric Acid layer	100X12	molecul	0 to
		column density	0	es/cm2	100000000
HNO3_MR	Float	Nitric Acid mixing	100X12	ppb	0 to
		ratio	0		100000000
N2O	Float	Nitrous Oxide	100X12	molecul	0 to
		layer column	0	es/cm2	100000000
		density			
N2O_MR	Float	Nitrous Oxide	100X12	ppb	0 to
_		mixing ratio	0		100000000
SO2	Float	Sulfur Dioxide	100X12	molecul	0 to
		layer column	0	es/cm2	100000000
		density			
SO2_MR	Float	Sulfur Dioxide	100X12	ppb	0 to
_		mixing ratio	0		100000000
MW_Freque	Float	Microwave	16X120	cm-1	0 to 10000
ncy		frequency			
MW_Emis	Float	Microwave	16X120	None	0 to 1
_		emissivity			
MIT_MW_E	Float	Microwave	16X120	None	0 to 1
mis		emissivity from			
		MIT retrieval			
IR_Emis_Fr	Float	IR emissivity	100X12	cm-1	0 to 10000
eq		hinge point	0		
·		frequencies			
FG_IR_Emis	Float	IR emissivity	100X12	cm-1	0 to 10000
_Freq		hinge point	0		
		frequencies from			
		the first guess			
IR_Surface_	Float	IR surface	100X12	None	0 to 1
Emis		emissivity	0		
FG_IR_Surf	Float	IR surface	100X12	None	0 to 1
ace_Emis		emissivity from	0		
		the first guess			
IR_Surface_	Float	IR surface	100X12	percent	0 to 100
Refl		reflectance	0		
Stability	Float	Stability	16X120	Varying	0 to 1000000
		parameters			
Cloud_Freq	Float	Cloud IR	100X8	cm-1	0 to 10000
		frequencies	X120		

NUCAPS

Cloud_Emis	Float	Cloud IR emissivity	100X8 X120	None	0 to 1
Cloud_Refl	Float	Cloud IR reflectivity	100X8 X120	percent	0 to 100
quality_infor mation	Char	Empty variable, containing a collection of attributes describing quality information metadata	0	N/A	N/A

Baseline Date: April 13, 2017

NUCAPS

External Users Manual

Table 1-4 NUCAPS CCR Archive File

Variable	Type	Description	Dim	Units	Range
CrIS_Chann els	Long	Channel number for the CrIS radiance data	1317	None	1 to 1317
CrIS_Freque ncies	Float	Frequency at which the CrIS radiances are observed	1317	cm-1	1 to 10000
Subset_CrIS _FORs	Long	The index of the CrIS fields of regard to subset	120	None	1 to 120
Subset_CrIS _FOVs	Long	The index of the CrIS fields of view to subset	1	None	1 to 9
Scan_Line	Long	The number of the current scan line in the granule	120	None	1 to 4
CrIS_FORs	Long	CrIS Fields of Regard per granule	120	None	1 to 120
CrIS_FOVs	Long	CrIS Fields of View per FOR	120	None	1 to 9
Quality_Flag	Byte	CrIS quality flag	120	None	0 to 31
Time	Doub le	UTC Milliseconds since Jan 1, 1970	120	Milliseco nds	9500000000 0 to 25000000000 00
CrIS_Latitud e	Float	CrIS Latitude values for each FOV	120	Degrees	-90 to 90
CrIS_Longit ude	Float	CrIS Longitude values for each FOV	120	Degrees	-180 to 180
CrIS_Radian ces	Float	CrIS Cloud-Cleared Radiances (CCR) for each FOV	1317 X120	mW/(m2 sr cm-1)	-5 to 150
CrIS_View_ Angle	Float	CrIS View Angles for each FOV	120	Degrees	-60 to 60
Satellite_Hei ght	Float	Satellite height above each FOV	120	km	800 to 900

NUCAPS

External Users Manual

Solar_Zenith	Float	Solar zenith angles for each FOV	120	Degrees	0 to 180
Ascending_ Descending	Short	Orbital status for each FOV	120	None	0 to 1
quality_infor mation	Char	Empty variable, containing a collection of attributes describing quality information metadata	0	N/A	N/A

Table 1-5 NUCAPS OLR File

Variable	Туре	Description	Dim	Units	Range
LAT	Float	CrIS Latitude values for each FOV	4x30x9	Degrees	-90 to 90
LON	Float	CrIS Longitude values for each FOV	4x30x9	Degrees	-180 to 180
TIME	Double	UTC time as milliseconds from 01/01/1970	4x30x9	msec	
SATZEN	Float	Solar zenith angles for each FOV	4x30x9	Degrees	0 to 180
SATHEIGHT	Float	SATELLITE HEIGHT for each FOV	4x30x9	km	0 to 180
VIEWANG	Float	CrIS View Angles for each FOV	4x30x9	Degrees	-49 to 49
FLUX	Float	CrIS OLR at top-of- atmosphere	4x30x9	Wm-2	0 to 500
QA	Short	CrIS level1c radiance quality flag	4x30x9	None	0 to 1
AD	Short	CrIS level1c AD flag	4x30x9	None	0 to 1

External Users Manual

NUCAPS

Table 1-6 NUCAPS EDR 0.5X2 Global Grids File

Variable	Туре	Description	Dim	Units	Range
YearMonthD	Float	Calendar date	720X9	MMDDY	010100 to
	Tioat	Caleffual date	1	Y	123199
Time	Float	Hours.Fractional	720X9	Hours	0 to 24
Time	rioat	Minutes		Hours	0 10 24
Onial Latitud	F la -4		70000	D	00.45.00
Grid_Latitud	Float	Latitude locations	720X9	Degrees	-90 to 90
<u>e</u>		of the grid points	1		1001 100
Grid_Longitu	Float	Longitude locations	720X9	Degrees	-180 to 180
de		of the grid points	1		
Instrument_	Float	Latitude of the	720X9	Degrees	-90 to 90
Latitude		actual observations	1		
Instrument_	Float	Longitude of the	720X9	Degrees	-180 to 180
Longitude		actual observations	1		
View_Angle	Float	Viewing angle of	720X9	Degrees	-60 to 60
		the sensor from the	1		
		satellite			
Satellite_Hei	Float	Satellite height	720X9	km	800 to 900
ght			1		
Mean_CO2	Float	Column averaged	720X9	ppm	0 to 1000
		CO2 of the FOR	1		
Solar_Zenith	Float	Solar zenith angle	720X9	Degrees	0 to 180
_		· ·	1		
Topography	Float	Surface height	720X9	Meters	0 to 10000
		- Carrence rivergria	1		
Land_Fracti	Float	Land fraction	720X9	None	0 to 1
on			1		
Surface Pre	Float	Surface air	720X9	mb	0 to 10000
ssure	. Tout	pressure	1	1110	0.0000
Skin_Tempe	Float	Surface	720X9	Kelvin	0 to 1000
rature	Toat	temperature	1	ICIVIII	0 10 1000
MW Surfac	Float	Microwave surface	720X9	None	0 to 10
e_Class	riuat	class	1	INOTIE	0 10 10
	Floor		720X9	None	0 to 1
MW_Surfac	Float	Microwave surface		ivone	0 10 1
e_Emis		emissivity	1		

NOAA/NESDIS/STAR/OSPO ATMO-SONU07-01-V5.0 ESPC-RIBK-13-090024 Baseline Date: April 13, 2017

NUCAPS

External Users					
N_Smw_Per	Float	Number of MW	720X9	None	1 to 16
_FOV		spectral points	1		
nemis_Per_	Float	Number of surface	720X9	None	1 to 100
FOV		emis hinge points	1		
ncemis_Per	Float	Number of cloud	720X9	None	1 to 100
_FOV		emis hinge points	1		
ncld_Per_F	Float	Number of cloud	720X9	None	1 to 8
OV		layers	1		
Quality_Flag	Float	Quality flags for	720X9	None	0 to 31
		retrieval	1		
Cloud_Top_	Float	Cloud top air	720X9	mb	0 to 10000
Pressure		pressure	1X8		
Cloud_Top_	Float	Cloud top fractional	720X9	None	0 to 1
Fraction		coverage	1X8		
Pressure	Float	Air pressure	720X9	mb	0 to 2000
			1X100		
Effective_Pr	Float	Effective aire	720X9	mb	0 to 2000
essure		pressure	1X100		
Temperature	Float	Air temperature	720X9	Kelvin	0 to 1000
			1X100		
H2O	Float	Water vapor layer	720X9	molecul	0 to
		column density	1X100	es/cm2	100000000
H2O_MR	Float	Water vapor mixing	720X9	g/g	0 to
		ratio	1X100		100000000
O3	Float	Ozone layer	720X9	molecul	0 to
		column density	1X100	es/cm2	100000000
O3_MR	Float	Ozone mixing ratio	720X9	ppb	0 to
			1X100		100000000
Liquid_H2O	Float	Liquid water layer	720X9	molecul	0 to
		column density	1X100	es/cm2	10000000
Liquid_H2O	Float	Liquid water mixing	720X9	g/g	0 to
_MR		ratio	1X100		10000000
Ice_Liquid_F	Float	Ice liquid flag	720X9	None	0 to 1
lag			1X100		
CO	Float	Carbon monoxide	720X9	molecul	0 to
		layer column	1X100	es/cm2	100000000
		density			
CO_MR	Float	Carbon monoxide	720X9	ppb	0 to
		mixing ratio	1X100		100000000
CH4	Float	Methane layer	720X9	molecul	0 to
		column density	1X100	es/cm2	100000000
		,			

ATMO-SONU07-01-V5.0 ESPC-RIBK-13-090024

Baseline Date: April 13, 2017

NUCAPS

External Osers		•			
CH4_MR	Float	Methane mixing	720X9	ppb	0 to
		ratio	1X100		100000000
CO2	Float	Carbon dioxide dry	720X9	ppm	0 to 1000
		mixing ratio	1X100		
N2O	Float	Nitrous Oxide layer	720X9	molecul	0 to
		column density	1X100	es/cm2	100000000
N2O_MR	Float	Nitrous Oxide	720X9	ppb	0 to
		mixing ratio	1X100		100000000
SO2	Float	Sulfur Dioxide	720X9	molecul	0 to
		layer column	1X100	es/cm2	100000000
		density			
SO2_MR	Float	Sulfur Dioxide	720X9	ppb	0 to
		mixing ratio	1X100		100000000
HNO3	Float	Nitric Acid layer	720X9	molecul	0 to
		column density	1X100	es/cm2	100000000
HNO3_MR	Float	Nitric Acid mixing	720X9	ppb	0 to
		ratio	1X100		100000000
MW_Freque	Float	Microwave	720X9	cm-1	0 to 10000
ncy		frequency	1X16		
MW_Emis	Float	Microwave	720X9	None	0 to 1
		emissivity	1X16		
IR_Emis_Fr	Float	IR emissivity hinge	720X9	cm-1	0 to 10000
eq		point frequencies	1X100		
IR_Surface_	Float	IR surface	720X9	None	0 to 1
Emis		emissivity	1X100		
IR_Surface_	Float	IR surface	720X9	percent	0 to 100
Refl		reflectance	1X100		
CrIS_FORs	Float	CrIS Fields of	720X9	None	1 to 120
_		Regard	1		
FG_Temper	Float	Air temperature	720X9	Kelvin	0 to 1000
ature		from the first guess	1X100		
FG_H2O_M	Float	Water vapor mixing	720X9	g/g	0 to
R		ratio from the first	1X100		100000000
		guess			
FG_O3_MR	Float	Ozone mixing ratio	720X9	ppb	0 to
		from the first guess	1X100		10000000

NUCAPS

External Users Manual

Table 1-7 NUCAPS OLR 0.5X2 Global Grids File

Variable	Type	Description	Dim	Units	Range
YearMonthD	Real	Year/Month/Day	720X9	MMDDY	010100 to
ay		string given as YYYYMMDD.	1	Υ	123199
Time	Real	Hours.Fractional_M inutes	720X9 1	Hours	0 to 24
Grid_Latitud e	Real	Lat locations of the grid points (± 90 degrees)	720X9 1	Degrees	-90 to 90
Grid_Longitu de	Real	Lon locations of the grid points (± 90 degrees)	720X9 1	Degrees	-180 to 180
Instrument_L atitude	Real	Lat locations of the actual observations (± 90 degrees)	720X9 1	Degrees	-90 to 90
Instrument_L ongitude	Real	Lon locations of the actual observations (± 90 degrees)	720X9 1	Degrees	-180 to 180
View_Angle	Real	The view angle of the current CrIS FOV (± 90 degrees)	720X9 1	Degrees	-60 to 60
Satellite_Zen ith	Real	The satellite zenith of each matched CrIS FOV (0 - 90 degrees).	720X9 1	Degrees	0 to 70
Satellite_Hei ght	Real	The satellite height of each matched CrIS FOV (km).	720X9 1	km	800 to 900
Flux	Real	Outgoing Longwave Radiation Flux	720X9 1	Wm ⁻²	0 to 500
Quality_Flag	Real	OLR quality flag	720X9 1	None	0 to 1

Baseline Date: April 13, 2017

NUCAPS

OSPO/ESPC-

External Users Manual

2. ALGORITHM

2.1. Algorithm Overview

The NUCAPS profile products and cloud-cleared radiances are generated using a retrieval algorithm whereas the thinned radiances and global products do not require a science algorithm and can be conceived of as a reorganization of the data. The Outgoing Longwave Radiances are generated using a separate code. The retrieval algorithm runs inside a system of supporting software. This system was developed during the Aqua mission to use data from the AIRS/AMSU/MODIS instruments, but was designed to be flexible to use IASI/AMSU-A/MHS/AVHRR and CrIS/ATMS. The NUCAPS retrieval algorithm has a flexible modular design that allows the types of instruments, the amount of diagnostics, and the activation of various retrieval process steps to be turned on or off via a set of input name-lists. This flexibility allows the system to be used for research or in a faster and more efficient operational manner. For information about the NUCAPS algorithm, see the NUCAPS Algorithm Theoretical Basis Document (NESDIS/STAR, 2009). The output files are described earlier in section 1.3. This section describes the input files.

2.2. Input Satellite Data

2.2.1. Satellite Instruments

NUCAPS is a product system operated within the NDE DHS by OSPO. NUCAPS uses data from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) instruments on the NPOESS Preparatory Project (NPP) platform. NPP launched on October 28, 2011. It is in a sun synchronous circular orbit with a 10:30am descending-node orbit at an altitude of 824 km.

CrIS is a Michelson Interferometer with 2211 channels measuring in the Infrared (IR) portion of the spectrum. It has the following spectral characteristics:

CrIS spectral bands: LWIR Band 650-1095 cm⁻¹ MWIR Band 1210-1750 cm⁻¹ SWIR Band 2155-2550 cm⁻¹

CrIS full-spectral resolution: LWIR Band < 0.625cm⁻¹ MWIR Band < 0.625cm⁻¹

NUCAPS

External Users Manual SWIR Band < 0.625cm⁻¹

The CrIS instrument starts a new Earth scan every 8 seconds. Each scans contains 30 Fields of Regard (FOR) viewed on the Earth's surface with a scan width of ±50°. Each FOR contains a simultaneously measured 3X3 set of Fields of View (FOVs). The CrIS FOVs are circular and have a diameter of 14 km at nadir.

ATMS is a cross-track scanning 22-channel passive microwave radiometer. The channels are bands from 23 GHz through 183 GHz making its measurement capabilities similar to that of the Advanced Microwave Sound Unit (AMSU) and the Microwave Humidity Sounder (MHS). ATMS makes three scans (a scan set) every eight seconds. Each scan contains a single row of 96 FOVs. The FOV coverage sizes vary for each ATMS channel. ATMS scan sets are synchronized with those of the CrIS instrument. With each scan, the ATMS FOV coverage extends over each end of the associated CrIS scans. This is done to allow for footprint resampling of the smaller ATMS FOVs into larger AMSU-A like footprints (~40km at nadir). The resampled ATMS radiances can be used as input into existing retrieval algorithms like that in NUCAPS.

Both the CrIS and ATMS instruments are scheduled to fly on the JPSS J1 and J3 platforms as well. Additional details about these instruments can be found at:

http://jointmission.gsfc.nasa.gov/cris.html

2.2.2. Pre-Processing Steps

The Raw Data Records (RDR) CrIS and ATMS instrument packet data are transmitted from the satellite to the ground stations and are then sent to the Internal Data Processing Segment (IDPS) at the NOAA Satellite Operations Facility (NSOF). The IDPS applies the instrument calibration and geolocation to generate the Science Data Records (SDR) and Temperature Data Record (TDR) files required by NUCAPS. The SDR and TDR are distributed from the IDPS and made available to NDE as 32 second granule files in HDF5 format. When NDE has the inputs required to process a CrIS and ATMS granule set (based on the NUCAPS production rules), it executes the job to produce the output file described in this document.

Format information on the CrIS and ATMS SDR and TDR files is described in the NPOESS Common Data Format Control Book – External, Volume III – SDR/TDR Formats. The most recent versions of all the CDFCB documents can be obtained from the JPSS Program Office or from the NASA NPP site:

Baseline Date: April 13, 2017

NUCAPS

OSPO/ESPC-

External Users Manual

http://npp.gsfc.nasa.gov/documents.html

http://www.nasa.gov/mission_pages/NPP/main/index.html

Information about the GFS forecast files can be found at: http://www.nco.ncep.noaa.gov/pmb/products/gfs/

Within NUCAPS, there is additional pre-processing required to get the CrIS, ATMS, and GFS data into an input format that can be directly read by the retrieval code. That internal NUCAPS preprocessing is discussed in the NUCAPS SMM (NESDIS/STAR, 2017).

NDE Data Handling System (DHS) ingests the CrIS SDR and ATMS TDR data from IDPS. The NUCAPS software units generate the products running within NDE system and the output products are distributed by the NDE distribution system.

CrIS is a Michelson interferometer based on the principle of Fourier Transform and designed to measure with high resolution and high spectral accuracy the emission of infrared radiation from the atmosphere in three bands in the spectral range from 3.9 to 15.4 µm (650 – 2550 cm⁻¹). The core of the instrument is a Fourier transform spectrometer which measures in one sweep the spectral features of the atmosphere with high spectral resolution and throughput. The spectrometer transforms the incoming spectral radiance, i.e. the spectrum, into a modulated signal, the interferogram, where all infrared wavenumbers in the band of interest are present simultaneously. The output from the spectrometer consists of one such interferogram for each observed scene.

The ground segment algorithms are required to transform raw instrument records (RDR) into sensor data records (SDR), which are essentially calibrated spectra. Auxiliary data will also be used in conjunction with several indicators to address the accuracy of the data. The SDR Algorithm system mathematically retransforms the scene interferograms from the CrIS instrument into spectral information useful for retrieving the atmospheric parameters,

The incoming data may be acquired during deep space, internal calibration blackbody, and scene atmospheric measurements of the CrIS sensor. Each of these three types of incoming data therefore needs to be processed differently. Once combined together they will ultimately generate calibrated spectra with small residual errors.

The main objectives of the SDR Algorithms are:

Pre-process incoming data packets Version 5.0 April 2017

Baseline Date: April 13, 2017

NUCAPS

OSPO/ESPC-

External Users Manual

Load and sort data

Convert interferograms to spectra

Convert scene measurements into calibrated spectra

Compute spectral calibration, using metrology wavelength measurements

- Characterize metrology using neon lamp reference measurements
- Monitor metrology drift using laser diode parameters measurements **»**
- Perform alias unfolding and spectral labeling **»**
- Map spectral channels to a fixed wavenumber grid **»**

Compute radiometric calibration, using reference calibration measurements

- Average warm calibration target data, average cold calibration target data **»**
- Subtract sensor background radiance **»**
- Remove sensor induced phase dispersion **»**
- Correct for fringe count errors **»**
- Perform non-linearity correction **»**
- Correct for off-axis self-apodization on each FOV **»**
- Correct for polarization errors **»**
- Remove orthogonal noise components **»**

Compute geometric calibration, using LOS position and ephemeris data

Evaluate the associated error

Check for data quality and maintain quality controls

Compute NEdN estimates

2.3. Input Ancillary Data

2.3.1. Digital Elevation Model

There is one Digital Elevation Model (DEM) file: Global DEM.bin

It contains the following fields: latitude, longitude, topography (elevation in meters), land fraction, and land/sea mask. The values in the file apply to the center of a grid cell. The

Version 5.0 **April 2017**

Baseline Date: April 13, 2017

NUCAPS

External Users Manual

DEM is a global file with a resolution of 21600 latitude points X 43200 longitude points. This provides a grid resolution of 0.0083° X 0.0083°. This file is static and is delivered as part of the system which is why the DEM resides in the system file directory. The file is used in the L1C Subsetter and L1B Processing units. In these units, the preprocessing for level2 adds the DEM information. The downstream Level 2 Processing unit code requires this surface information for the retrieval.

2.3.2. Retrieval System Files

There are a number of static retrieval system files. These are inputs to the NUCAPS retrieval, but unlike data files, they are static and are only updated with a delivery of the system.

Table 2-1 contains the file name in the first column and the second column contains a brief description of the file.

Table 2-1 Retrieval System Files

File	Description
jpl_100.inp	Ensemble error estimate of
	climatology
airs_olr.dat	Radiative transmittance coefficients to
	compute Outgoing Longwave
	Radiation
L2.M.weight.hsb.v1.0.0.anc	HSB weighting file
L2.M.ecof_705.v1.0.0.anc	Microwave retrieval error covariance
	file
L2.M.cov100av.v1.0.0.anc	Microwave retrieval error covariance
	file
L2.uars_clim.v1.0.3.anc	UARS climatology file for upper
	atmosphere
ncep_clim.bin	NCEP climatology file for
	Temperature and water vapor.
L2.masuda.v2.0.0.anc	Coefficients for the Masuda surface
	emissivity model for ocean
RTA_atms_20111107.bin	The ATMS RTA file
170214_hr_cris_tuning_mask_guard.asc	The CrIS hi-res (hr) tuning mask file.
Tuning_mask_cris_nsr_atms_20150213.asc	The CrIS low res (nsr) tuning mask
	file.

Baseline Date: April 13, 2017

NUCAPS

External Osers Maridal	
File	Description
cris_fsr_wavenumber.asc	The CrIS frequency list for hi-res (fsr)
cris_nsr_wavenumber.asc	and low-res (nsr).
cris_solar_v11a.txt	The solar irradiance files for hi-res
cris_solar_v10a.txt	(v11a) and low-res (v10a).
RTA_cris_fsr_v11a_20161222.bin	The CrIS RTA files for hi-res (V11a)
RTA_cris_nsr_v10a_20110218.bin	and low-res (V10a).
161101cris_fsr_guard.dat	The IR noise files for hi-res mode.
tobin120120.dat	The IR noise files for low-res mode.
cris_888g.t1	The cloud averaging table for hi-res
	mode.
cris_v10a.t1	The cloud averaging table for low-res
	mode.
170211_cris_irv11_tdr.asc	The CrIS hi-res tuning coefficient files
	for both IR+MW and IR-only modes
Tuning_cris_nsr_atms_20120515_20150213.asc	The CrIS low-res tuning coefficient file
	for IR+MW mode.
Tuning_cris_nsr_atms_v1.7.asc	The CrIS low-res tuning coefficient file
	for IR-only mode.
reg_eigenvec_cris_fsr_20150115_20170224.asc	The CrIS hi-res IR regression
	eigenvector file for both IR+MW and
	IR-only modes.
reg_eigenvec_cris_nsr_20150512.asc	The CrIS low-res IR regression
	eigenvector file for IR+MW mode.
reg_eigenvec_cris_nsr_noatms_20161026.asc	The CrIS low-res IR regression
	eigenvector file for IR-only mode.
reg_coef_ccr_cris_fsr_20170226.asc	Static
reg_coef_ccr_cris_fsr_noatms_20170314.asc	The CrIS hi-res (fsr) IR CCR
	regression file for the IR-only mode.
reg_coef_ccr_cris_nsr_20150514.asc	The CrIS low-res (nsr) IR CCR
	regression file for the IR+MW mode.
reg_coef_ccr_cris_nsr_noatms_20161103.asc	The CrIS low-res (nsr) IR CCR
	regression file for the IR-only mode.
reg_coef_all_cris_fsr_20170225.asc	The CrIS hi-res (fsr) IR all-sky
	regression file for the IR+MW mode.
reg_coef_all_cris_fsr_noatms_20170310.asc	The CrIS hi-res (fsr) IR all-sky
	regression file for the IR-only mode.
reg_coef_all_cris_nsr_20150512.asc	The CrIS low-res (nsr) IR all-sky
	regression file for the IR+MW mode.
reg_coef_all_cris_nsr_noatms_20161026.asc	The CrIS low-res (nsr) IR all-sky
	regression file for the IR-only mode.

Baseline Date: April 13, 2017

NUCAPS

LAGITIAI OSCIS IVIAITUAI	
File	Description
170211_rtaerr_irv11_tdr.asc	The RTA error file for both the hi-res
	IR+MW and IR-only modes.
cris_rtaerr_v10a.asc	The RTA error file for the low-res
	IR+MW mode.
cris_rtaerr_irv10_tdr_v1.7.asc	The RTA error file for the low-res IR-
	only mode.
atms_20141212.dat	The microwave noise file for the hi-res
	IR+MW, hi-res IR-only, and the low-
	res IR-only mode.
atms_1.dat	The microwave noise file for the low-
	res IR+MW mode.
hr_irmw_clouds_cris.nl	Cloud files name lists for hi-res (hr)
hr_iro_clouds_cris.nl	and low-res (Ir) IR+MW and IR-only
lr_irmw_clouds_cris.nl	processing modes.
lr_iro_clouds_cris.nl	
hr_irmw_io_cris.nl	Input/Output name lists for hi-res (hr)
hr_iro_io_cris.nl	and low-res (Ir) IR+MW and IR-only
lr_irmw_io_cris.nl	processing modes.
lr_iro_io_cris.nl	
hr_irmw_microw_cris.nl	Microwave file name lists for hi-res
hr_iro_microw_cris.nl	(hr) and low-res (lr) IR+MW and IR-
lr_irmw_microw_cris.nl	only processing modes.
lr_iro_microw_cris.nl	
hr_irmw_ozone_cris.nl	Ozone file name lists for hi-res (hr)
hr_iro_ozone_cris.nl	and low-res (Ir) IR+MW and IR-only
lr_irmw_ozone_cris.nl	processing modes.
lr_iro_ozone_cris.nl	
hr_irmw_pro_cris.nl	Profile file name lists for hi-res (hr)
hr_iro_pro_cris.nl	and low-res (Ir) IR+MW and IR-only
lr_irmw_pro_cris.nl	processing modes.
lr_iro_pro_cris.nl	
hr_irmw_temp_cris.nl	Temperature file name lists for hi-res
hr_iro_temp_cris.nl	(hr) and low-res (Ir) IR+MW and IR-
lr_irmw_temp_cris.nl	only processing modes.
Ir_iro_temp_cris.nl	
hr_irmw_water_cris.nl	Water vapor file name lists for hi-res
hr_iro_water_cris.nl	(hr) and low-res (Ir) IR+MW and IR-
lr_irmw_water_cris.nl	only processing modes.
Ir_iro_water_cris.nl	

Baseline Date: April 13, 2017

External Users Manual

NUCAPS

OSPO/ESPC-

2.3.3. GFS Forecast Files

These are forecast files generated by NCEP and pushed (by NCEP) to the ESPC/DDS. These files are needed for the NUCAPS EDR generation.

The files have the following name structure:

gfs.t\${Hour}z.pgrbf\${Forecast}

where:

\${Hour} = the time for which the forecast is run (00Z, 06Z, 12Z, and 18Z) \${Forecast} = the forecast projection time (in hours = 00, 03, 06, 09, and 12)

00, 03, 06, 09, and 12 hour forecasts are run every six hours. The files are GRIB2 format files and are read with the *wgrib2* reader which is freely available from NCEP. The header content of any GRIB2 file can viewed by running *wgrib2* and supplying the file name as an argument to the command.

The forecast file preprocessor in the EDR Processing unit uses these files to extract only the surface pressure. The retrieval uses the surface pressure to anchor its solution to the surface. The following forecast variables are extracted from 91 levels and used by this processing:

Run Hour

Forecast Hour

Forecast Latitude

Forecast Longitude

Pressure

Temperature

Water Vapor

Ozone

2 meter Dew Point

2 meter Temperature

Skin Temperature

Surface Pressure

Precipitable Water Content

Total Column Ozone

Sea Surface Temperature

Land Fraction

Temperature of the 30 mb to 0 mb layer

Version 5.0

27

April 2017

OSPO/ESPC-

Baseline Date: April 13, 2017

NUCAPS
External Users Manual

2.3.4. Eigenvector Files

There are three of these files, one for each of the three bands. These are text files shown here:

```
eigvec.cris_HSR_713_band1.${Day}${Month}${Year}
eigvec.cris_HSR_865_band2.${Day}${Month}${Year}
eigvec.cris_HSR_633_band3.${Day}${Month}${Year}
where:
${Year} = 2-digit year
${Month} = 2-digit month
${Day} = 2-digit day
713 = LW band
865 = MW band
633 = SW band
HSR = CrIS Hi-spectral resolution
```

The date string indicates when the file was generated. This file contains the eigenvector coefficients required for principal component radiance reconstructions. It is a file that will need to be updated about once every six months or if there are major changes to the calibration of the instrument.

2.3.5. OLR Boxcar files

The OLR code uses a number of boxcar static files that are provided with the system.

```
These files are called: airs_17boxcar_01.txt airs_17boxcar_02.txt airs_17boxcar_03.txt airs_17boxcar_04.txt airs_17boxcar_05.txt airs_17boxcar_06.txt airs_17boxcar_07.txt airs_17boxcar_09.txt airs_17boxcar_09.txt airs_17boxcar_10.txt airs_17boxcar_11.txt airs_17boxcar_12.txt Version 5.0
```

April 2017

28

NOAA/NESDIS/STAR/OSPO ATMO-SONU07-01-V5.0 ESPC-RIBK-13-090024 Baseline Date: April 13, 2017 OSPO/ESPC-

NUCAPS

```
External Users Manual
airs 17boxcar 13.txt
airs_17boxcar_14.txt
airs 17boxcar 15.txt
airs 17boxcar 16.txt
airs_17boxcar_17.txt
airs 17boxcar.txt
cris_17boxcar_01.txt
cris 17boxcar 02.txt
cris_17boxcar_03.txt
cris 17boxcar 04.txt
cris 17boxcar 05.txt
cris_17boxcar_06.txt
cris 17boxcar 07.txt
cris 17boxcar 08.txt
cris_17boxcar_09.txt
cris 17boxcar 10.txt
cris_17boxcar_11.txt
cris 17boxcar 12.txt
cris_17boxcar_13.txt
cris_17boxcar_14.txt
cris 17boxcar 15.txt
cris_17boxcar_16.txt
cris 17boxcar 17.txt
cris_17boxcar.txt
olr_reg_coef_cv005_17boxcar_2.asc
rad_corr_reg_coef_17boxcar_airsv10ab_2.asc
```

2.3.6. VIIRS collocation LUT Files

The CrIS-VIIRS collocation code uses a set of look up tables to more quickly collocate the two instruments. These files are called:

CrIS_VIIRS_MOD.dat CrIS_VIIRS_MOD_HEI.dat CrIS_VIIRS_WGT.dat CrIS_VIIRS_WGT_HEI.dat

2.3.7. Template Files

The system uses a number of template files. These are all static files that will only change with a new delivery of the system. They are never modified by the scripts and programs Version 5.0

April 2017

NUCAPS

External Users Manual

that use them. Scripts will only copy these files to a local directory or create soft links to

them

2.3.7.1. CDL Template Files

These are template parameter files used for generating the NUCAPS SDR and NUCAPS EDR granule subsets. These files contain the lists of channels and footprints to be extracted for each type of subset. They also contain the variable lists, array sizes and array dimensions for each NetCDF output file. Each file can be converted into a NetCDF file using the *ncgen* NetCDF4 library utility. This file will have a complete header based on that of the CDL template, but contains no instrument data values, only fill (missing) values. These files are then populated with instrument data values by the subsetter code. There is a different template file for each type of subset.

The following NUCAPS CDL template files shown in Table 2-2 are present in the current build:

Table 2-2 NUCAPS CDL Files

CDL Template Name	Description
nucaps_all_HR.cdl	A netCDF4 template for the all-FOV,
	2211 channel radiance file.
nucaps_c0300_allfovs_HR.cdl	A netCDF4 template for the all-FOV,
	431 channel radiance file.
nucaps_ccr_archive_HR.cdl	A template CCR granule product
	archive file which also contains static
	metadata.
nucaps_l2.cdl	A template for the CrIS EDR granule
	profile product file which also contains
	static metadata.
nucaps_olr.cdl	A template for the CrIS OLR granule
	product file which also contains static
	metadata.

Baseline Date: April 13, 2017

NUCAPS

External Users Manual 3. PERFORMANCE

3.1. Product Testing

3.1.1. Test Data

Description of all NUCAPS test data (input, output, and intermediate) used in unit and system tests is provided in the NUCAPS Algorithm Readiness Review documents for Phases 1-4. These are available by contacting the NUCAPS Product Area Lead (PAL) at OSPO.

3.1.2. Test Plans

Description of all NUCAPS test plans used in unit and system tests is provided in the NUCAPS Algorithm Readiness Review documents for Phases 1-4. These are available by contacting the NUCAPS Product Area Lead (PAL) at OSPO.

3.2. Product Accuracy

3.2.1. Test Results

Description of all NUCAPS test results from the unit and system tests is provided in the NUCAPS Algorithm Readiness Review documents for Phases 1-4. These are available by contacting the NUCAPS Product Area Lead (PAL) at OSPO.

3.2.2. Product Accuracy

The Retrieval algorithm product accuracy validation is provided in the NUCAPS Algorithm Readiness Review documents for Phases 1-4. Accuracy and precision requirements are document in the NUCAPS Requirements Document and are derived from the JPSS L1RD Supplement and the JERD.

There are no accuracy requirements for the thinned radiance products or validation products. Validation products are for validation and quality monitoring and therefore do not have any accuracy requirements.

3.3. Product Quality

All the CrIS and ATMS thinned radiance and validation output data files contain the following 6 CrIS quality flags and 2 ATMS quality flags.

ATMO-SONU07-01-V5.0

ESPC-RIBK-13-090024 Baseline Date: April 13, 2017

NUCAPS

External Users Manual

CrIS_QF1 = QF1_SCAN_CRISSDR of the CrIS SDR input data.

CrIS_QF2 = QF2_CRISSDR of the CrIS SDR input data.

CrIS QF3 = QF3 CRISSDR of the CrIS SDR input data.

CrIS_QF4 = QF4_CRISSDR of the CrIS SDR input data.

CrIS_QF5 = QF1_CRISSDRGEO of the CrIS SDR Geolocation input data.

CrIS_QF6 = NUCAPS Aggregate quality flag

ATMS_QF1 = ATMS Aggregate quality flag (0 = good, 1 = bad if any relative quality flags in the ATMS TDR and Geolocation input data are not equal to zero)
ATMS_QF2 = ATMS Aggregation qulatity flag (0 = good, 1 = bad if there is an error occurred during the ATMS resampling process)

The CrIS flags, except for CrIS_QF6 are bit fields. CrIS_QF1 – CrIS_QF5 are defined in the JPSS Common Data Format Control Books Volume III. CrIS_QF6 is created by the NUCAPS code and is a summary of all the bit field flags. A CrIS_QF6 = 0 indicates all the other bit fields within all the other quality flags are indicating good data. A non-zero flag indicates a problem and therefore the user should interrogate the other flags for details.

The NUCAPS CrIS OLR Quality_Flag is defined at:

0 - good

1 - rejected

-9999 - missing

The NUCAPS retrieval output data files (CCR archive and EDR) contain Quality_Flag with following value settings:

0 - good

1 - rejected by physical

2 - rejected by MIT file

4 - rejected by NOAA (regression) file

8 - rejected by internal MIT

9 - rejected by physical and internal MIT

16 - rejected by internal NOAA

17 - rejected by physical and internal NOAA

24 - rejected by internal MIT and internal NOAA

25 - rejected by physical, internal MIT, and internal NOAA

-9999 - missing

NOAA/NESDIS/STAR/OSPO ATMO-SONU07-01-V5.0 ESPC-RIBK-13-090024

Baseline Date: April 13, 2017

NUCAPS

OSPO/ESPC-

External Users Manual **3.4. Analysis Tools**

No external product tools are supplied. The NUCAPS output files are plain text files, binary files, or netCDF4 files. External users can choose their own tools to display and analyze these output files.

OSPO/ESPC-

Baseline Date: April 13, 2017

NUCAPS

External Users Manual 4. PRODUCT STATUS

4.1. Operations Documentation

Operational logs contain the information regarding the changes made to science, instruments, and systems. Basically the Configuration Management system will have the detailed information about these changes, but operational logs keep the high level description of these changes.

NESDIS/STAR (2013), NUCAPS Algorithm Theoretical Basis Document, Version 1.0.

NESDIS/STAR (2017), NUCAPS System Maintenance Manual, Version 5.0.

4.2. Maintenance History

The System Maintenance Manual (SMM) has been been updated to reflect the changes that will be required to maintain the NUCAPS system within the ESPC environment. Information regarding the changes to the products is tracked by the Operational logs and will be available to users on request. Product metadata will be updated as per the changes required in the product including the version number, quality flags etc.

END OF DOCUMENT