

NOAA-20 VIIRS Land Surface Temperature Provisional Maturity Review

Presented by Yunyue Yu

Contributed by Yuling Liu and Heshun Wang

Feb. 21, 2019

Overview

- O LST Cal/Val Team Members
- O Product Requirements
- O NOAA 20 VIIRS LST Status

• Evaluation of the NOAA 20 VIIRS LST

- o Visual Analysis and Beta Correction
- o Theoretical evaluation of the NOAA 20 LST LUT
- o Validation against the ground LST data
- Cross comparison with other satellite LST products
- Documentation (Science Maturity Check List)
- Provisional Maturity Summary
 - O Evaluation Summary
 - O Provisional Maturity Check list
- Path Forward to Validated Maturity

LST Cal/Val Team Members

	Name	Institute	Function
JPSS-STAR	Ivan Csiszar	NOAA/NESDIS/SATR	Land Lead, Project Management
	Yunyue Yu	NOAA/NESDIS/SATR	EDR Lead, algorithm development/improvement, calibration/validation, team management
	Yuling Liu	NOAA Affiliate, UMD/ESSIC	product monitoring and validation ; algorithm development/improvement
	Heshun Wang	NOAA Affiliate, UMD/ESSIC	algorithm improvement, product calibration/validation
	Peng Yu	NOAA Affiliate, UMD/ESSIC	product validation tool, monitoring, applications
	Yuhan Rao	NOAA Affiliate, UMD/ESSIC	Product assessment analysis
	Walter Walf	NOAA/NESDIS/SATR	STAR ASSIST Lead
	Christopher Selman	NOAA Affiliate, SciTech/IMSG	STAR ASSIST, Algorithm System integration
	Arthur Russakoff	NOAA Affiliate, SciTech/IMSG	STAR ASSIST, Algorithm System integration
NOAA/EMC	Daryl Kleist	NOAA/EMC/NCEP	user readiness
	Yihua Wu	NOAA Affiliate	user readiness
	Weizhong Zheng	NOAA Affiliate	user readiness
	Xiaoyan Zhang	NOAA Affiliate	user readiness

Product Requirements from JPSS L1RD

	JPSS VIIRS LS	Т
Products	Threshold	Objective
LST applicable condition: Clear only		
Measurement Accuracy(bias)	1.4 K	0.8 K
Measurement Precision(1 sigma)	2.5 K	1.5 K
Measurement Range	213 – 343 K	183 – 343 K
Refresh	At least 90% coverage of globe every 12 hours(monthly average)	3 hours
Horizontal Cell Size	0.8 km	0.5 km
Mapping uncertainty	1 km at Nadir	1 km at Edge of Scan

JPSS Data Products Maturity Definition

JPSS/GOES-R Data Product Validation Maturity Stages – COMMON DEFINITIONS (Nominal Mission)

2. Provisional

- o Product performance has been demonstrated through analysis of a large, but still limited
 - (i.e., not necessarily globally or seasonally representative) number of independent measurements obtained from selected locations, time periods, or field campaign efforts.
- Product analyses are sufficient for qualitative, and limited quantitative, determination of product fitness-for-purpose.
- Documentation of product performance, testing involving product fixes, identified product performance anomalies, including recommended remediation strategies, exists.
- Product is recommended for potential operational use (user decision) and in scientific publications after consulting

Algorithm update

- Enterprise VIIRS LST algorithm has been developed and integrated into the framework. DAP to NDE was delivered at the end of March, 2018.
- The enterprise LST algorithm has been applied over NOAA-20 data. NRT data of NOAA 20 LST has been generated in the ASSIST framework
- Issues observed during beta stage were fixed. The science code was updated since the beta review
- The LUT for NOAA 20 LST product has been updated and included in this Jan DAP.

- Visual Analysis and Beta Correction
- Theoretical evaluation of the NOAA 20 LST LUT
- Validation against the ground LST data
- Cross comparison with other satellite LST products

Issue I : Nighttime Quality flag Issue-fixed

Issue II: Snow cover input change

NOAA-20 LST Provisional Maturity Review

Issue III: LST LUT Discontinuity improved

Output update : geometric data added

Image: ADD_Availability Image: ADD_Availability Image: Columns Image: Columns <t< th=""><th>Clear Text</th></t<>	Clear Text
Image: Columns Recent Files / data/data258/erc. buzan/11.L54/online_output/201806211/RR-L5T_v1r0_j01_s201806211853015_c20180621185301500010181111100000000000000000000	Clear Text
Image: Service Image	L998 03 06 71 768 37 24 91 768 4 2
Image: Diffset Image: Diffset Image: Diffset Image: Diffset Image: Diffset Image: Diffset </th <th>1998 03 06 71 768 87 24 91 768 4 24</th>	1998 03 06 71 768 87 24 91 768 4 24
Image: LSE_ScaleFact Image: Rerent_Invalid Image: LST_Offset Image: Rerent_Invalid Image: LST_ScaleFact Image: Rerent_Land Image: Rerent_Land Image: Rerent_Land <	1998 03 06 71 768 87 24 91 768 4 5
Image: Fortent Land 383 32768 <th>03 06 71 768 87 24 91 768 4 5</th>	03 06 71 768 87 24 91 768 4 5
Image: State Fact Im	71 768 87 24 91 768 4 5
Attitude	24 91 768 4
390 -32768	<u>/68</u> 4
Image: Pixels_Invalid 393 -32768 -	
Motodoto 395 -32768	<u>1</u> 4
	<u>5</u> 0
Image: Second condition Image: Second	5
400 -32768 -3276	> 2 5
Viewing Rows 403 12562 12320 11619 11529 11556 11397 11875 11288 11078 10359 10038 10075 10130 10130 9800 9671 9979 96 Satellite_Azimuth_Angre 404 11341 11371 11496 11530 11719 11897 12060 11565 11062 10294 10068 10063 10050 10034 9241 9466 9699 9	<u>4</u> 8
Geometry Satellite_Zenith_Angle 405 11153 11448 11552 11735 1173 1173 1173 11915 11915 11915 11915 11915 11915 11915 11915 11915 10124 9940 10015 9773 9320 -3278 9476 94 0 1073 10729 1035 1073 10729 1035 11 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	768 76
408 11108 10858 11331 11506 11567 11600 11431 11196 10857 10095 9886 10370 11421 11572 -32768 11032 -32768 11032 -32768	768 768
LST Value StdDev_LST 410 10354 10954 1054 11126 11250 11250 11250 11250 11250 11057 10997 10790 10037 10783 10072 10884 -327.88 11150 11241 11220 11083 10291 10191 11241 11220 11083 10291 101910 10191 10191 10191 10191 10191 10191 10191	$\frac{54}{61}$
413 11087 11032 10830 10895 11101 10675 10662 10876 11080 10788 10248 11002 11373 11356 11404 11365 1173 VLST_Quality_Flag 414 10942 10757 10826 11002 10976 10709 10480 10338 10811 10414 10326 11274 11210 11298 11357 1 414 10942 10757 10826 11002 10976 10709 10480 10338 10811 10414 10346 11158 11274 11210 11298 11357 1	20 29
LST	15 36 17
	D2 ▼
VIST (2582, 2) ICUME VIST (2582, 2) IST (2582, 2)	

- Visual Analysis and Beta Correction
- Theoretical evaluation of the NOAA 20 LST LUT
- Validation against the ground LST data
- Cross comparison with other satellite LST products

NOAA-20 VIIRS LST LUT Theoretical Evaluation

- Visual Analysis and Beta Correction
- Theoretical evaluation of the NOAA 20 LST LUT
- Validation against the ground LST data
 - o SURFRAD
 - o BSRN
- Cross comparison with other satellite LST products

NOAA 20 VIIRS LST against ground data

Site No.	Site Location	Lat(N)/Lon(W)	Surface Type(IGBP)
1	Bondville, IL	40.05/88.37	Crop Land
2	Boulder, CO	40.13/105.24	Crop Land
3	Desert Rock, NV	36.63/116.02	Open Shrub Land
4	Fort Peck, MT	48.31/105.10	Grass Land
5	Goodwin Creek, MS	34.25/89.87	Grass Land
6	Pennsylvania State University, PA	40.72/77.93	Crop Land
7	Sioux Falls, SD	43.73/96.62	Crop Land

Site Name	count	bias	std	Count (day)	Bias (day)	Std (day)	Count (night)	Bias (night)	Std (night)
BON	163	0.47	1.38	39	0.48	1.95	124	0.47	1.15
TBL	193	-0.20	1.45	59	0.10	1.56	134	-0.33	1.39
DRA	245	-2.08	1.55	103	-2.06	1.89	142	-2.09	1.25
FPK	200	-0.41	1.47	69	-0.72	1.75	131	-0.24	1.28
GWN	200	0.52	3.01	66	-2.75	2.30	134	2.14	1.73
PSU	80	0.55	1.71	17	1.30	1.46	63	0.35	1.73
SXF	208	0.10	1.54	67	-0.19	1.68	141	0.23	1.45

- Visual Analysis and Beta Correction
- Theoretical evaluation of the NOAA 20 LST LUT
- Validation against the ground LST data
 - o SURFRAD
 - o BSRN
- Cross comparison with other satellite LST products

NOAA 20 VIIRS LST against ground data

- Visual Analysis and Beta Correction
- Theoretical evaluation of the NOAA 20 LST LUT
- Validation against the ground LST data
- Cross comparison with other satellite LST products
 - o Enterprise SNPP LST
 - o MODIS AQUA LST
 - o GOES 16 LST

NOAA 20 VIIRS LST vs SNPP LST

Condition

- NOAA20 and SNPP LST were generated using the latest LUT
- Two days in each month of 2018 were selected for comparison
- LST difference for day (Left) and night (Right) were presented

Results

- Daytime LST diff. presents an orbit-related pattern particularly at mid and low latitude
- The LST diff. is small at high latitude area for both daytime and nighttime

60°N

ഗ്

15

NOAA 20 VIIRS LST vs SNPP LST

- View time difference presents similar stripe pattern to the LST difference.
- View time difference is generally 50 minutes at low and mid latitude. The time difference is larger at high latitude area
- View angle difference also presents a stripe pattern

- Visual Analysis and Beta Correction
- Theoretical evaluation of the NOAA 20 LST LUT
- Validation against the ground LST data
- Cross comparison with other satellite LST products
 - Enterprise SNPP LST
 - MODIS AQUA LST
 - o GOES 16 LST

- Spatial coverage: as shown in the circled area
- Temporal coverage : every month
- Day/night: both included
- MODIS Product selection: MYD21, latest MODIS LST product in version 6 was selected for the cross comparison.

The regions covered by the cross comparison

SNO Date 2-18	VIIRS	MODIS	Region	Samples	Bias (K)	STD (K)	RMSE (K)
20180211 (042)	02:00-02:04	02:05	Africa	115688	-0.29	1.59	1.61
	04:25-04:32	04:30	Australia	370326	-2.17	2.49	3.30
20180304(063)	08:45-08:50	08:55	US	644994	0.53	1.74	1.82
	20:05	19:55	US	74793	-0.49	2.11	2.16
20180320(079)	08:45-08:50	08:55	US	723437	0.58	1.76	1.85
	11:30-11:40	11:40	Africa	387709	-2.12	1.61	2.67
	15:50-15:55	15:50	Australia	30167	0.38	1.31	1.36
	18:05-18:10	18:00	South Africa	48921	-1.15	3.34	3.53
	20:00-20:10	19:55	US	133721	0.14	2.85	2.85
20180408(098)	0735-07:39	07:35	Greenland	44257	0.44	1.69	1.74
20180424(114)	07:35-07:39	07:35	Greenland	102200	0.01	1.22	1.22
20180512(132)	22:15-22:19	22:15	Mid-north Asia	245013	0.27	1.21	1.24
20180526(146)	0644-06:46	06:45	South Pole	116261	-0.14	0.77	0.78
20180611(162)	07:34-07:38	07:35	Greenland	215109	0.06	0.78	0.79
20180822(234)	09:44-09:51	09:40	Arabian Peninsula	60293	-1.91	3.45	3.94
20180824(236)	21:03-2110	21:05	US	166280	-1.30	4.09	4.29
20180902(245)	00:04-00:12	00:05	North Africa	204908	-1.63	1.37	2.13
20180904(247)	12:10-12:20	12:15	South Africa	756012	-1.14	2.40	2.66
	17:13-17:21	17:10	South America	27405	-1.08	3.17	3.34
20180920(263)	09:34-09:41	09:40	US	574271	0.67	2.16	2.26
	12:21-12:31	12:25	North Africa	235305	-3.03	2.3	3.8
	20:54-21:00	20:45	US	151374	-0.97	3.91	4.02

SNO Date 2-18	VIIRS	MODIS	Region	Samples	Bias (K)	STD (K)	RMSE (K)
20181017(290)	05:19-05:26	05:20	Australia	209549	-1.40	2.54	2.90
	01:08-01:13	01:15	North Africa	321086	-1.57	1.78	2.37
	09:24-09:30	09:20	US	135948	0.54	1.36	1.47
20181107(311)	12:10-12:20	12:15	South Africa	284200	-0.63	2.44	2.52
	12:20-12:28	12:25	North Africa	306504	-2.61	2.40	3.54
	16:37-16:42	16:35	Australia	128961	-0.09	1.11	1.11
	20:55-21:01	20::45	US	136666	-0.54	2.96	3.01
20181118(322)	09:24-09:30	09:30	US	13237	0.42	1.99	2.03
	10:34-10:40	10:30	West Asia and North Africa	118871	-1.51	2.4	2.84
20181121(325)	00:08-00:13	00:05	North Africa	93173	0.05	1.86	1.86
20181129(333)	00:58-01:L05	00:55	North Africa	147532	0.14	1.48	1.48
20181017(290)	05:55-05:59	05:55	Greenland	74336	0.26	1.16	1.19
20181014(287)	14:27-14:31	14:25	South Pole	955	-0.77	0.76	1.08
20181110(314)	05:55-05:59	05:55	South Pole	29561	-0.57	1.60	1.70
20181126(330)	06:45-06:49	06:45	Greenland	30959	0.26	2.07	2.09

Matchup Criteria:

- The temporal difference is mostly within 10 minutes
- The spatially closest pixel
- The angle difference is within 10 degree
- Both are cloud clear

Limitation:

 The comparison is at regional scale not global scale due to SNO limitations. It represents the LST difference over Africa, Australia, US, mid-north Asia, South America and Greenland and South pole area.

20

10

NOAA20_VIIRS LST vs AQUA LST at 20180211_t0200394

0

-20

-10

240 260 280 300 320 AQUA LST(K)

220

340

NOAA20_VIIRS LST vs AQUA LST at 20180320_t0845480

Cross comparison with AQUA MODIS LST

- Visual Analysis and Beta Correction
- Theoretical evaluation of the NOAA 20 LST LUT
- Validation against the ground LST data
- Cross comparison with other satellite LST products
 - o MODIS AQUA LST
 - o Enterprise SNPP LST
 - o GOES 16 LST

Cross comparison with GOES16 LST

The matchup cases are on 04/15, 04/17,04/27 and 04/28.

Match up criteria:

- temporal differences less than 7.5 minutes
- Confidently clear for ABI
- Clear VIIRS pixel percentage within a ABI grid greater than 75%
- Cross-sensor match-up data pairs w/ viewing angle differences less than 5 degree

Error Budget Summary

Attribute Analyzed	L1RD Threshold	Analysis/Validation Result	Error Summary
Theoretical evaluation	1.4K(2.5K)	Day: 0.34K (0.69 K) Night: 0.19K (0.48K)	The error statistics is based on the simulation database.
T-based Validation	1.4K(2.5K)	BON: 0.47K (1.38K) TBL: -0.2K (1.45K) DRA:-2.1K (1.55K) FPK: -0.41K (1.47K) GWN: 0.52 (3.01K) PSU: 0.55K (1.71K) SXF: 0.1K (1.54K)	The error statistics is based on the validation against SURFRAD measurements for the time period from Jan. 05- Dec. 2018 of NOAA 20 VIIRS data. The error budget is limited by ground data quality control, cloud filtering procedure and upstream error from the input data particularly surface type.
		GOB:-0.24K(1.97K) CAB:0.19K(2.02K)	The error statistics is based on the validation against BSRN measurements for the time period from Jan. 05- Nov. 2018 of NOAA 20 VIIRS data. The error budget is limited by ground data quality control, cloud filtering procedure and upstream error from the input data particularly surface type.
Cross satellite Comparison		AQUA MODIS LST -0.73(2.46) Daytime: -1.5(2.67) Nighttime:0.15(1.85)	The error is estimated according to cross comparison between NOAA 20 VIIRS LST and MODIS AQUA LST . This error budget has a regional limitation, i.e. over US, Australia, Africa, west Asia, South America, Greenland and South pole. It is also limited by the spatial and temporal difference, sensor difference, angle difference etc.
		GOES-16: -0.40K (2.44K) Daytime: -2.03K (2.21 K) Nighttime: 0.47K (2.33K)	The error is estimated according to cross comparison between NOAA 20 VIIRS LST and GOES 16 LST. This error budget has a regional limitation (over US only) and seasonal limitation(only for April 2018). It is also limited by the spatial and temporal difference, sensor difference, angle difference etc.

Science Maturity Check List	Yes ?
ReadMe for Data Product Users	Yes
Algorithm Theoretical Basis Document (ATBD)	Yes
Algorithm Calibration/Validation Plan	Yes
(External/Internal) Users Manual	Yes
System Maintenance Manual	Yes
Peer Reviewed Publications (Demonstrates algorithm is independently reviewed)	In preparation

Evaluation/Validation Summary

NOAA 20 LST has performance well based on our local computation, though the data is still limited and longer period of validation is necessary.

- Track and fix the problems observed
- Theoretical evaluation presents an overall reasonable uncertainty of 0.5 K and 0.7 K for night and day, respectively. The uncertainty increases with angle and total water vapor with ~3K under the very moist condition and large viewing angle.
- Ground site observation data (7 from SURFRAD; 2 from BSRN) were used in the validation. Overall good agreement is achieved. Further investigation is needed over certain sites e.g DRA and GWN.
- The cross comparison shows : NOAA 20 LST is overall consistent to AQUA MODIS LST and GOES 16 ABI LST; the LST difference between NOAA 20 LST and SNPP LST has an expected orbit-related pattern, and the difference varies over region and day/night.

JERD	Requirement	Performance
	Applicable Conditions: Clear Condition only	
JERD-2438	The algorithm shall produce a land surface temperature product with a horizontal cell size of 0.80 km	Yes
JERD-2516	The algorithm shall produce a land surface temperature product with a mapping uncertainty (3 sigma) of 1 km at Nadir	Yes
JERD-2517	The algorithm shall produce a land surface temperature product with a measurement range of 213 – 343 K	Yes
JERD-2518	The algorithm shall produce a land surface temperature product with a measurement precision (1 sigma) of 2.5 K (Note 1)	Yes, details are given in error budget summary
JERD-2519	The algorithm shall produce a land surface temperature product with a measurement accuracy (bias) of 1.4 K (Note 1)	Yes, details are given in error budget summary

Note 1: Accuracy and precision performance will be verified and validated for an aggregated 4 km horizontal cell to provide for adequate comparability of performance across the scan

Check List - Provisional Maturity

Provisional Maturity End State	Assessment
Product performance has been demonstrated through analysis of a large but still limited (i.e. not necessarily globally or seasonally representative) is minimally validated, number of independent measurements obtained from selected locations, periods, and associated ground truth or field campaign efforts.	Yes. Multiple dataset comparisons are conducted using available independent ground measurements, SNPP LST, AQUA MODIS LST, and GOES 16 LST. Limitations are noted in readme.
Product analysis is sufficient to communicate product performance to users relative to expectations (Performance baseline)	Yes. Evaluation documents are available to users upon request.
Documentation of product performance exists that includes recommended remediation strategies for all anomalies and weaknesses. Any algorithm changes associated with severe anomalies have been documented, implemented, tested and shared with the user community	Yes. The performance analyses are all documented. Monitoring results (weekly) are recorded and shared through ftp site. Weakness and further improvements are filed.
Product is ready for operational use and for use in comprehensive cal/val activities and product optimization	Yes. Limitations are noted in the Readme.

Path Forward/ Future Plan

- Product refinement
 - LUT for the enterprise NOAA 20 LST needs further evaluation and calibration with more data available.
 - The preliminary validation shows that the performance over certain site meet the requirement.
 Further analysis and improvements are needed.
 - Method to further improve the LST discontinuity is under development.
 - Method to identify outlier and reduce ground measurement noise is under development.
- Global /Comprehensive Validation
 - o Monitoring tool
 - o Global in situ data collection
 - Extend the cross satellite comparisons. (Sentinel, SEVIRI, AHI, GOES 17 ...)
- Gridded NOAA 20 LST product generation
- Promote VIIRS LST data usage in NOAA climate model application. Continue to support the studies using VIIRS LST in model for air temperature prediction over Alaska area.

Thanks for your attention.